. 24/7 Space News .
TIME AND SPACE
Lights, action, electrons!
by Staff Writers
Onna, Japan (SPX) Oct 14, 2016


Members of the Femtosecond Spectroscopy Unit at OIST in action. Dr. Bala Murali Krishna Mariserla, Dr. Julien Madeo, Athanasios Margiolakis, Dr. Michael Man, and Skylar Deckoff-Jones. Image courtesy OIST.

Ever since J.J. Thompson's 1897 discovery of the electron, scientists have attempted to describe the subatomic particle's motion using a variety of different means. Electrons are far too small and fast to be seen, even with the help of a light microscope. This has made measuring an electron's movement very difficult for the past century. However, new research from the Femtosecond Spectroscopy Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), published in Nature Nanotechnology, has made this process much easier.

"I wanted to see the electrons in the material. I wanted to see the electrons move, not just to explain their motion by measuring a change of light transmission and reflection in the material," said Prof. Keshav Dani, leader of Unit.

The limiting factor to studying electron movement using previous techniques was that the instrumentation could either provide excellent time resolution or spatial resolution, but not both. Dr. Michael Man, a postdoctoral fellow in Prof. Dani's Unit, combined the techniques of UV light pulses and electron microscopy in order to see electrons moving inside a solar cell.

If you shine light on a material, the light energy can be absorbed by the electrons and move them from a low-energy state to a higher one. If the light pulse that you shine at the material is very, very short, a few millionths of a billionth of a second - that is a few femto seconds - it creates a very rapid change in the material.

However, this change does not last long, as the material goes back to its original state on a very fast time scale. For a device to work, like in a solar cell, we have to extract energy from the material while it is still at the high energy state. Scientists want to study how materials change state and lose energy.

"In reality, you cannot watch these electrons changing state on such a fast time scale. So, what you do is measure the change of reflectivity of the material," Dr. Man explained. To understand how the material changes when exposed to light, researchers expose the material to a very short, but intense, pulse of light which causes the change, and then continuing to measure the change introduced by the first pulse by probing the material with subsequent much weaker light pulses at different delay times after the first pulse.

As the first discrete bundle of massless energy, or photon, changes the material, by rapidly heating it for example, the reflection of the subsequent photon changes. As the material cools down, the reflection goes back to the original one. These differences tell the scientists the dynamic of the observed phenomenon.

"The problem is that you do not actually directly observe the electron dynamics that causes the changes: you measure the reflection and then you try to find an explanation based on the interpretation of your data," Prof. Dani said. "You create a model that explains the results of your experiment. But you do not actually see what is happening."

Prof. Dani's team found a way to visualize this phenomenon in a semiconductor device.

"When the pulse hits the material, it takes some electrons out, and we use an electron microscope that forms an image of where the displaced electrons came from," Dr. Man said.

"If you do this many times, for many photons, you can slowly build up an image of the distribution of the electrons in the material. So you photo-excite the sample, you wait for a certain time, and then you probe your sample and you repeat this process again and again, keeping the delay between the first pulse of photons and the probing photons always the same." As a final result, you get an image of the location of most of the electrons in the material at a specific time delay.

Then, the researchers change the time delay between the two pulses - the photo-exciting one and the probing one - and they create another image of the location of the electrons. Once an image is created, the probing pulse is further delayed, creating a series of images that describes the positions of the electrons in subsequent times after the photo-excitation. "When you stitch all these images together, you finally have a video," Prof. Dani said.

"A video of how the electrons are moving in the material after photo excitation: you see the electrons getting excited, and then going back to their original state."

"We have made a video of a very fundamental process: for the first time we are not imagining what is happening inside a solar cell, we are actually seeing it. We can now describe what we see in this time-lapse video, we no longer have to interpret data and imagine what might have happened inside a material. This is a new door to understanding the motion of electrons in semiconductors materials." Prof. Dani effused.

This research provides a new insight into the movement of electrons that could potentially change the way solar cells and semiconductor devices are built. This new insight brings the technology field one step closer to building better and more efficient electronic devices.

Research paper


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TIME AND SPACE
Stable molecular state of photons and artificial atom discovered
Tokyo, Japan (SPX) Oct 13, 2016
Researchers at the National Institute of Information and Communications Technology (NICT, President: Dr. Masao Sakauchi), in collaboration with researchers at the Nippon Telegraph and Telephone Corporation (NTT, Representative Member of the Board and President, Mr. Hiroo Unoura) and the Qatar Environment and Energy Research Institute (QEERI, Acting Executive Director: Dr. Marwan Khraisheh) have ... read more


TIME AND SPACE
Hunter's Supermoon to light up Saturday night sky

Small Impacts Are Reworking Lunar Soil Faster Than Scientists Thought

A facelift for the Moon every 81,000 years

Exploration Team Shoots for the Moon with Water-Propelled Satellite

TIME AND SPACE
ESA lander starts 3-day descent to Mars; Telemetry all good

DREAMS of Mars: Europe's ExoMars Mission Arrives in the Middle of Dust Season

How Mars' moon Phobos came to look like the Death Star

Schiaparelli readied for Mars landing

TIME AND SPACE
Beaches, skiing and tai chi: Club Med, Chinese style

NASA begins tests to qualify Orion parachutes for mission with crew

New Zealand government open-minded on space collaboration

Growing Interest: Students Plant Seeds to Help NASA Farm in Space

TIME AND SPACE
China to launch manned spacecraft: Xinhua

Closing windows on Shenzhou 11

China to launch world's first X-ray pulsar navigation satellite

China may be only country with space station in 2024

TIME AND SPACE
Hurricane Nicole delays next US cargo mission to space

Automating sample testing thanks to space

Orbital CRS-5 launching hot and bright science to space

Roscosmos Sets New Date for Soyuz MS-02 Launch to Orbital Station

TIME AND SPACE
Ariane 5 ready for first Galileo payload

Orbital ATK and Stratolaunch partner to offer competitive launch opportunities

Trusted Ariane 5 lays foundations for Ariane 6

ULA gets $860 million contract modification for expendable launch vehicle

TIME AND SPACE
Stars with Three Planet-Forming Discs of Gas

TESS will provide exoplanet targets for years to come

The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

TIME AND SPACE
Achieving ultra-low friction without oil additives

Beijing to merge chemicals giants

Scientists model anti-reflective surfaces after cicada wings

TES team evaluates new data collection method after age-related issue









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.