. | . |
Light-controlled Higgs modes found in superconductors by Staff Writers Ames IA (SPX) Jan 20, 2021
Even if you weren't a physics major, you've probably heard something about the Higgs boson. There was the title of a 1993 book by Nobel laureate Leon Lederman that dubbed the Higgs "The God Particle." There was the search for the Higgs particle that launched after 2009's first collisions inside the Large Hadron Collider in Europe. There was the 2013 announcement that Peter Higgs and Francois Englert won the Nobel Prize in Physics for independently theorizing in 1964 that a fundamental particle - the Higgs - is the source of mass in subatomic particles, making the universe as we know it possible. (Plus, there are the Iowa State University physicists on the author list of a 2012 research paper describing how the ATLAS Experiment at the collider observed a new particle later confirmed to be the Higgs.) And now Jigang Wang, a professor of physics and astronomy at Iowa State and a senior scientist at the U.S. Department of Energy's Ames Laboratory, and a team of researchers have discovered a form of the famous particle within a superconductor, a material capable of conducting electricity without resistance, generally at very cold temperatures. Wang and his collaborators - including Chang-Beom Eom, the Raymond R. Holton Chair for Engineering and Theodore H. Geballe Professor at the University of Wisconsin-Madison; Ilias Perakis, professor and chair of physics at the University of Alabama at Birmingham; and Eric Hellstrom, professor and interim chair of mechanical engineering at Florida State University - report the details in a paper recently published online by the journal Nature Communications. They write that in lab experiments they've found a short-lived "Higgs mode" within iron-based, high-temperature (but still very cold), multi-energy band, unconventional superconductors.
A quantum discovery Wang said this Higgs mode within a superconductor could potentially be used to develop new quantum sensors. "It's just like the Large Hadron Collider can use the Higgs particle to detect dark energy or antimatter to help us understand the origin of the universe," Wang said. "And our Higgs mode sensors on the table-top have the potential help us discover the hidden secrets of quantum states of matter." That understanding, Wang said, could advance a new "quantum revolution" for high-speed computing and information technologies. "It's one way this exotic, strange, quantum world can be applied to real life," Wang said.
Light control of superconductors Wang's research group uses a tool called quantum terahertz spectroscopy to visualize and steer pairs of electrons moving through a superconductor. The tool uses laser flashes as a control knob to accelerate supercurrents and access new and potentially useful quantum states of matter. Eom's group developed the synthesis technique that produces crystalline thin films of the iron-based superconductor with high enough quality to reveal the Higgs mode. Hellstrom's group developed deposition sources for the iron-based superconducting thin film development. Perakis' group led the development of quantum models and theories to explain the results of the experiments and to simulate the salient features that come from the Higgs mode. The work has been supported by a grant to Wang from the National Science Foundation and grants to Eom and Perakis from the U.S. Department of Energy. "Interdisciplinary science is the key here," Perakis said. "We have quantum physics, materials science and engineering, condensed matter physics, lasers and photonics with inspirations from fundamental, high-energy and particle physics." There are good, practical reasons for researchers in all those fields to work together on the project. In this case, students from the four research groups worked together with their advisors to accomplish this discovery. "Scientists and engineers," Wang wrote in a research summary, "have recently come to realize that certain materials, such as superconductors, have properties that can be exploited for applications in quantum information and energy science, e.g., processing, recording, storage and communication."
Research Report: "Light quantum control of persisting Higgs modes in iron-based superconductors"
X-Rays surrounding 'Magnificent 7' may be traces of sought-after particle Berkeley CA (SPX) Jan 19, 2021 A new study, led by a theoretical physicist at the U.S. Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars. First theorized in the 1970s as part of a solution to a fundamental particle physics problem, axions are expected to be produced at the core of stars, and to convert into particles of light, called photons, in ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |