. 24/7 Space News .
TIME AND SPACE
Light-based 'tractor beam' assembles materials at the nanoscale
by Staff Writers
Seattle WA (SPX) Nov 05, 2019

Focused laser light generates an optical "tractor beam," which can manipulate and orient semiconductor nanorods (red) with metal tips (blue) in an organic solvent solution. The energy from the laser superheats the metallic tip of the trapped nanorod, allowing the aligned nanorods to be welded together end-to-end in a solution-based "nanosoldering" process.

Modern construction is a precision endeavor. Builders must use components manufactured to meet specific standards - such as beams of a desired composition or rivets of a specific size. The building industry relies on manufacturers to create these components reliably and reproducibly in order to construct secure bridges and sound skyscrapers.

Now imagine construction at a smaller scale - less than 1/100th the thickness of a piece of paper. This is the nanoscale. It is the scale at which scientists are working to develop potentially groundbreaking technologies in fields like quantum computing. It is also a scale where traditional fabrication methods simply will not work. Our standard tools, even miniaturized, are too bulky and too corrosive to reproducibly manufacture components at the nanoscale.

Researchers at the University of Washington have developed a method that could make reproducible manufacturing at the nanoscale possible. The team adapted a light-based technology employed widely in biology - known as optical traps or optical tweezers - to operate in a water-free liquid environment of carbon-rich organic solvents, thereby enabling new potential applications.

As the team reports in a paper published Oct. 30 in the journal Nature Communications, the optical tweezers act as a light-based "tractor beam" that can assemble nanoscale semiconductor materials precisely into larger structures. Unlike the tractor beams of science fiction, which grab spaceships, the team employs the optical tweezers to trap materials that are nearly one billion times shorter than a meter.

"This is a new approach to nanoscale manufacturing," said co-senior author Peter Pauzauskie, a UW associate professor of materials science and engineering, faculty member at the Molecular Engineering and Sciences Institute and the Institute for Nano-engineered Systems, and a senior scientist at the Pacific Northwest National Laboratory. "There are no chamber surfaces involved in the manufacturing process, which minimizes the formation of strain or other defects. All of the components are suspended in solution, and we can control the size and shape of the nanostructure as it is assembled piece by piece."

"Using this technique in an organic solvent allows us to work with components that would otherwise degrade or corrode on contact with water or air," said co-senior author Vincent Holmberg, a UW assistant professor of chemical engineering and faculty member in the Clean Energy Institute and the Molecular Engineering and Sciences Institute. "Organic solvents also help us to superheat the material we're working with, allowing us to control material transformations and drive chemistry."

To demonstrate the potential of this approach, the researchers used the optical tweezers to build a novel nanowire heterostructure, which is a nanowire consisting of distinct sections comprised of different materials. The starting materials for the nanowire heterostructure were shorter "nanorods" of crystalline germanium, each just a few hundred nanometers long and tens of nanometers in diameter - or about 5,000 times thinner than a human hair. Each is capped with a metallic bismuth nanocrystal.

The researchers then used the light-based "tractor beam" to grab one of the germanium nanorods. Energy from the beam also superheats the nanorod, melting the bismuth cap. They then guide a second nanorod into the "tractor beam" and - thanks to the molten bismuth cap at the end - solder them end-to-end. The researchers could then repeat the process until they had assembled a patterned nanowire heterostructure with repeating semiconductor-metal junctions that was five-to-ten times longer than the individual building blocks.

"We've taken to calling this optically oriented assembly process 'photonic nanosoldering' - essentially soldering two components together at the nanoscale using light," said Holmberg.

Nanowires that contain junctions between materials - such as the germanium-bismuth junctions synthesized by the UW team - may eventually be a route to creating topological qubits for applications in quantum computing.

The tractor beam is actually a highly focused laser that creates a type of optical trap, a Nobel Prize-winning method pioneered by Arthur Ashkin in the 1970s. To date, optical traps have been used almost exclusively in water- or vacuum-based environments. Pauzauskie's and Holmberg's teams adapted optical trapping to work in the more volatile environment of organic solvents.

"Generating a stable optical trap in any type of environment is a delicate balancing act of forces, and we were lucky to have two very talented graduate students working together on this project," said Holmberg.

The photons that make up the laser beam generate a force on objects in the immediate vicinity of the optical trap. The researchers can adjust the laser's properties so that the force generated can either trap or release an object, be it a single germanium nanorod or a longer nanowire.

"This is the kind of precision needed for reliable, reproducible nanofabrication methods, without chaotic interactions with other surfaces or materials that can introduce defects or strain into nanomaterials," said Pauzauskie.

The researchers believe that their nanosoldering approach could enable additive manufacturing of nanoscale structures with different sets of materials for other applications.

"We hope that this demonstration results in researchers using optical trapping for the manipulation and assembly of a wider set of nanoscale materials, irrespective of whether or not those materials happen to be compatible with water," said Holmberg.

Research paper


Related Links
University of Washington
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
NASA innovator experiments with force fields for moving matter
Greenbelt MD (SPX) Oct 24, 2019
On a metal work bench covered with tools, instruments, cords and bottles of solution, Aaron Yevick is using laser light to create a force field with which to move particles of matter. Yevick is an optical engineer who came to NASA's Goddard Space Flight Center in Greenbelt, Maryland, full-time earlier this year. Despite being in his current position with NASA less than a year, Yevick received funding from the Goddard Fellows Innovation Challenge (GFIC) - a research and development program focused ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
'From the internet up': Toronto plans futuristic bayfront

China talks up tech prowess in face of US rivalry

US vows closer cooperation with French space agency

Travel boom has not made world smaller, says writer Pico Iyer

TIME AND SPACE
DLR and FAA working to integrate commercial spaceflight into the air transport system

Air-breathing engine precooler achieves record-breaking Mach 5 performance

New rocket fairing design offers smoother quieter ride

Russia to start flight tests of hydrogen-fueled space booster in 2027 - developer

TIME AND SPACE
Mars Express completes 20,000 orbits around the Red Planet

Mars 2020 stands on its own six wheels

New selfie shows Curiosity, the Mars chemist

Naming a NASA Mars rover can change your life

TIME AND SPACE
China plans more space science satellites

China's absence from global space conference due to "visa problem" causes concern

China prepares for space station construction

China's rocket-carrying ships depart for transportation mission

TIME AND SPACE
European network of operations centres takes shape

Launch of the European AGILE 4.0 research project

SpaceX seeking many more satellites for space-based internet grid

OmegA team values partnerships with customer, suppliers

TIME AND SPACE
New material expands by a factor of 100 when electrocuted

Drexel researchers develop coal ash aggregate that helps concrete cure

Las Cumbres helping to develope a Cyberinfrastructure Institute for Astronomical Data

What About Space Traffic Management?

TIME AND SPACE
TESS reveals an improbable planet

Building blocks of all life gain new understanding

With NASA telescope on board, search for intelligent aliens 'more credible'

When Exoplanets Collide

TIME AND SPACE
NASA's Juno prepares to jump Jupiter's shadow

Huge Volcano on Jupiter's Moon Io Erupts on Regular Schedule

Stony-iron meteoroid caused August impact flash at Jupiter

Storms on Jupiter are disturbing the planet's colorful belts









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.