![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Johannesburg, South Africa (SPX) Jun 14, 2016
The rise of big data and advances in information technology has serious implications for our ability to deliver sufficient bandwidth to meet the growing demand. Researchers at the University of the Witwatersrand in Johannesburg, South Africa, and the Council for Scientific and Industrial Research (CSIR) are looking at alternative sources that will be able to take over where traditional optical communications systems are likely to fail in future. In their latest research, published in the scientific journal, Scientific Reports, the team from South Africa and Tunisia demonstrate over 100 patterns of light used in an optical communication link, potentially increasing the bandwidth of communication systems by 100 times. The idea was conceived by Professor Andrew Forbes from Wits University, who led the collaboration. The key experiment was performed by Dr Carmelo Rosales-Guzman, a Research Fellow in the Structured Light group in the Wits School of Physics, and Dr Angela Dudley of the CSIR, an honorary academic at Wits. The first experiments on the topic were carried out by Abderrahmen Trichili of Sup'Com (Tunisia) as a visiting student to South Africa as part of an African Laser Centre funded research project. The other team members included Bienvenu Ndagano (Wits), Dr Amine Ben Salem (Sup'Com) and Professor Mourad Zghal (Sup'Com), all of who contributed significantly to the work.
Bracing for the bandwidth ceiling But light also has a "pattern" - the intensity distribution of the light, that is, how it looks on a camera or a screen. Since these patterns are unique, they can be used to encode information: + pattern 1 = channel 1 or the letter A, + pattern 2 = channel 2 or the letter B, and so on.
What does this mean? Ten patterns mean a 10x increase in existing bandwidth, as 10 new channels would emerge for data transfer. At the moment modern optical communication systems only use one pattern. This is due to technical hurdles in how to pack information into these patterns of light, and how to get the information back out again.
How the research was done They used digital holograms written to a small liquid crystal display (LCD) and showed that it is possible to have a hologram encoded with over 100 patterns in multiple colours. "This is the highest number of patterns created and detected on such a device to date, far exceeding the previous state-of-the-art," says Forbes. One of the novel steps was to make the device 'colour blind', so the same holograms can be used to encode many wavelengths. According to Rosales-Guzman to make this work "100 holograms were combined into a single, complex hologram. Moreover, each sub-hologram was individually tailored to correct for any optical aberrations due to the colour difference, angular offset and so on".
What's next? "We are presently working with a commercial entity to test in just such an environment," says Forbes. The approach of the team could be used in both free-space and optical fibre networks. The work is freely available online here
Related Links University of the Witwatersrand Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |