. 24/7 Space News .
ROBO SPACE
Learning with light: New system allows optical 'deep learning'
by Staff Writers
Boston MA (SPX) Jun 16, 2017


This futuristic drawing shows programmable nanophotonic processors integrated on a printed circuit board and carrying out deep learning computing. Image: RedCube Inc., and courtesy of the researchers

"Deep Learning" computer systems, based on artificial neural networks that mimic the way the brain learns from an accumulation of examples, have become a hot topic in computer science. In addition to enabling technologies such as face- and voice-recognition software, these systems could scour vast amounts of medical data to find patterns that could be useful diagnostically, or scan chemical formulas for possible new pharmaceuticals.

But the computations these systems must carry out are highly complex and demanding, even for the most powerful computers.

Now, a team of researchers at MIT and elsewhere has developed a new approach to such computations, using light instead of electricity, which they say could vastly improve the speed and efficiency of certain deep learning computations. Their results appear in the journal Nature Photonics in a paper by MIT postdoc Yichen Shen, graduate student Nicholas Harris, professors Marin Soljacic and Dirk Englund, and eight others.

Soljacic says that many researchers over the years have made claims about optics-based computers, but that "people dramatically over-promised, and it backfired." While many proposed uses of such photonic computers turned out not to be practical, a light-based neural-network system developed by this team "may be applicable for deep-learning for some applications," he says.

Traditional computer architectures are not very efficient when it comes to the kinds of calculations needed for certain important neural-network tasks. Such tasks typically involve repeated multiplications of matrices, which can be very computationally intensive in conventional CPU or GPU chips.

After years of research, the MIT team has come up with a way of performing these operations optically instead. "This chip, once you tune it, can carry out matrix multiplication with, in principle, zero energy, almost instantly," Soljacic says. "We've demonstrated the crucial building blocks but not yet the full system."

By way of analogy, Soljacic points out that even an ordinary eyeglass lens carries out a complex calculation (the so-called Fourier transform) on the light waves that pass through it. The way light beams carry out computations in the new photonic chips is far more general but has a similar underlying principle.

The new approach uses multiple light beams directed in such a way that their waves interact with each other, producing interference patterns that convey the result of the intended operation. The resulting device is something the researchers call a programmable nanophotonic processor.

The result, Shen says, is that the optical chips using this architecture could, in principle, carry out calculations performed in typical artificial intelligence algorithms much faster and using less than one-thousandth as much energy per operation as conventional electronic chips.

"The natural advantage of using light to do matrix multiplication plays a big part in the speed up and power savings, because dense matrix multiplications are the most power hungry and time consuming part in AI algorithms" he says.

The new programmable nanophotonic processor, which was developed in the Englund lab by Harris and collaborators, uses an array of waveguides that are interconnected in a way that can be modified as needed, programming that set of beams for a specific computation.

"You can program in any matrix operation," Harris says. The processor guides light through a series of coupled photonic waveguides. The team's full proposal calls for interleaved layers of devices that apply an operation called a nonlinear activation function, in analogy with the operation of neurons in the brain.

To demonstrate the concept, the team set the programmable nanophotonic processor to implement a neural network that recognizes four basic vowel sounds. Even with this rudimentary system, they were able to achieve a 77 percent accuracy level, compared to about 90 percent for conventional systems.

There are "no substantial obstacles" to scaling up the system for greater accuracy, Soljacic says.

Englund adds that the programmable nanophotonic processor could have other applications as well, including signal processing for data transmission.

"High-speed analog signal processing is something this could manage" faster than other approaches that first convert the signal to digital form, since light is an inherently analog medium. "This approach could do processing directly in the analog domain," he says.

The team says it will still take a lot more effort and time to make this system useful; however, once the system is scaled up and fully functioning, it can find many user cases, such as data centers or security systems. The system could also be a boon for self-driving cars or drones, says Harris, or "whenever you need to do a lot of computation but you don't have a lot of power or time."

Research Report

ROBO SPACE
Facebook gives bots ability to negotiate, compromise
Washington (AFP) June 14, 2017
Facebook's artificial intelligence researchers announced Wednesday they had broken new ground by giving automated programs or "bots" the ability to negotiate, and make compromises. The new technology pushes forward the ability to create bots "that can reason, converse and negotiate, all key steps in building a personalized digital assistant," said researchers Mike Lewis and Dhruv Batra in a ... read more

Related Links
Massachusetts Institute of Technology
All about the robots on Earth and beyond!


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
To Be or Not to Be: At 20 ISS Goes Strong, But for How Long

Additional Astronaut on the Space Station Means Dozens of New Team Members on the Ground

Roscosmos Says Cooperation With NASA Unaffected by 'Political Outbursts'

Russia's New 'Federation' Spacecraft to be Launched from Baikonur in 2022

ROBO SPACE
Proton returns to flight with US satellite after 12 month hiatus

NASA awards Universal Stage Adapter contract for SLS

Russian rocket returns to service with launch of US satellite

Ariane 5 launches its heaviest telecom payload

ROBO SPACE
Opportunity Surveying the spillway into Perseverance Valley

Study estimates amount of water needed to carve Martian valleys

Curiosity Peels Back Layers on Ancient Martian Lake

Collateral damage from cosmic rays increases cancer risks for Mars astronauts

ROBO SPACE
Moon or Mars - humanity's next stop

Seeds of 5,000-year-old tree bud after returning from space

Reusable craft are in CASIC's plans

China discloses Chang'e 5 lunar probe landing site

ROBO SPACE
Thomas Pesquet returns to Earth

Propose a course idea for the CU space minor

Leading Global Air And Space Law Group Joins Reed Smith

New Horizons for Alexander Gerst

ROBO SPACE
Oyster shells inspire new method to make superstrong, flexible polymers

New technique enables 3-D printing with paste of silicone particles in water

Liquids are capable of supporting waves with short wavelengths only

Metal-ion catalysts and hydrogen peroxide could green up plastics production

ROBO SPACE
Flares May Threaten Planet Habitability Near Red Dwarfs

A planet hotter than most stars

Hubble's tale of 2 exoplanets - Nature vs nurture

Discovery reveals planet almost as hot as the Sun

ROBO SPACE
A whole new Jupiter with first science results from Juno

First results from Juno show cyclones and massive magnetism

Jupiters complex transient auroras

NASA's Juno probe forces 'rethink' on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.