. 24/7 Space News .
INTERNET SPACE
Learning on the edge
by Adam Zewe for MIT News
Boston MA (SPX) Oct 06, 2022

A machine-learning model on an intelligent edge device allows it to adapt to new data and make better predictions. For instance, training a model on a smart keyboard could enable the keyboard to continually learn from the user's writing.

Microcontrollers, miniature computers that can run simple commands, are the basis for billions of connected devices, from internet-of-things (IoT) devices to sensors in automobiles. But cheap, low-power microcontrollers have extremely limited memory and no operating system, making it challenging to train artificial intelligence models on "edge devices" that work independently from central computing resources.

Training a machine-learning model on an intelligent edge device allows it to adapt to new data and make better predictions. For instance, training a model on a smart keyboard could enable the keyboard to continually learn from the user's writing. However, the training process requires so much memory that it is typically done using powerful computers at a data center, before the model is deployed on a device. This is more costly and raises privacy issues since user data must be sent to a central server.

To address this problem, researchers at MIT and the MIT-IBM Watson AI Lab developed a new technique that enables on-device training using less than a quarter of a megabyte of memory. Other training solutions designed for connected devices can use more than 500 megabytes of memory, greatly exceeding the 256-kilobyte capacity of most microcontrollers (there are 1,024 kilobytes in one megabyte).

The intelligent algorithms and framework the researchers developed reduce the amount of computation required to train a model, which makes the process faster and more memory efficient. Their technique can be used to train a machine-learning model on a microcontroller in a matter of minutes.

This technique also preserves privacy by keeping data on the device, which could be especially beneficial when data are sensitive, such as in medical applications. It also could enable customization of a model based on the needs of users. Moreover, the framework preserves or improves the accuracy of the model when compared to other training approaches.

"Our study enables IoT devices to not only perform inference but also continuously update the AI models to newly collected data, paving the way for lifelong on-device learning. The low resource utilization makes deep learning more accessible and can have a broader reach, especially for low-power edge devices," says Song Han, an associate professor in the Department of Electrical Engineering and Computer Science (EECS), a member of the MIT-IBM Watson AI Lab, and senior author of the paper describing this innovation.

Joining Han on the paper are co-lead authors and EECS PhD students Ji Lin and Ligeng Zhu, as well as MIT postdocs Wei-Ming Chen and Wei-Chen Wang, and Chuang Gan, a principal research staff member at the MIT-IBM Watson AI Lab. The research will be presented at the Conference on Neural Information Processing Systems.

Han and his team previously addressed the memory and computational bottlenecks that exist when trying to run machine-learning models on tiny edge devices, as part of their TinyML initiative.

Lightweight training
A common type of machine-learning model is known as a neural network. Loosely based on the human brain, these models contain layers of interconnected nodes, or neurons, that process data to complete a task, such as recognizing people in photos. The model must be trained first, which involves showing it millions of examples so it can learn the task. As it learns, the model increases or decreases the strength of the connections between neurons, which are known as weights.

The model may undergo hundreds of updates as it learns, and the intermediate activations must be stored during each round. In a neural network, activation is the middle layer's intermediate results. Because there may be millions of weights and activations, training a model requires much more memory than running a pre-trained model, Han explains.

Han and his collaborators employed two algorithmic solutions to make the training process more efficient and less memory-intensive. The first, known as sparse update, uses an algorithm that identifies the most important weights to update at each round of training. The algorithm starts freezing the weights one at a time until it sees the accuracy dip to a set threshold, then it stops. The remaining weights are updated, while the activations corresponding to the frozen weights don't need to be stored in memory.

"Updating the whole model is very expensive because there are a lot of activations, so people tend to update only the last layer, but as you can imagine, this hurts the accuracy. For our method, we selectively update those important weights and make sure the accuracy is fully preserved," Han says.

Their second solution involves quantized training and simplifying the weights, which are typically 32 bits. An algorithm rounds the weights so they are only eight bits, through a process known as quantization, which cuts the amount of memory for both training and inference. Inference is the process of applying a model to a dataset and generating a prediction. Then the algorithm applies a technique called quantization-aware scaling (QAS), which acts like a multiplier to adjust the ratio between weight and gradient, to avoid any drop in accuracy that may come from quantized training.

The researchers developed a system, called a tiny training engine, that can run these algorithmic innovations on a simple microcontroller that lacks an operating system. This system changes the order of steps in the training process so more work is completed in the compilation stage, before the model is deployed on the edge device.

"We push a lot of the computation, such as auto-differentiation and graph optimization, to compile time. We also aggressively prune the redundant operators to support sparse updates. Once at runtime, we have much less workload to do on the device," Han explains.

A successful speedup
Their optimization only required 157 kilobytes of memory to train a machine-learning model on a microcontroller, whereas other techniques designed for lightweight training would still need between 300 and 600 megabytes.

They tested their framework by training a computer vision model to detect people in images. After only 10 minutes of training, it learned to complete the task successfully. Their method was able to train a model more than 20 times faster than other approaches.

Now that they have demonstrated the success of these techniques for computer vision models, the researchers want to apply them to language models and different types of data, such as time-series data. At the same time, they want to use what they've learned to shrink the size of larger models without sacrificing accuracy, which could help reduce the carbon footprint of training large-scale machine-learning models.

"AI model adaptation/training on a device, especially on embedded controllers, is an open challenge. This research from MIT has not only successfully demonstrated the capabilities, but also opened up new possibilities for privacy-preserving device personalization in real-time," says Nilesh Jain, a principal engineer at Intel who was not involved with this work. "Innovations in the publication have broader applicability and will ignite new systems-algorithm co-design research."

"On-device learning is the next major advance we are working toward for the connected intelligent edge. Professor Song Han's group has shown great progress in demonstrating the effectiveness of edge devices for training," adds Jilei Hou, vice president and head of AI research at Qualcomm. "Qualcomm has awarded his team an Innovation Fellowship for further innovation and advancement in this area."

This work is funded by the National Science Foundation, the MIT-IBM Watson AI Lab, the MIT AI Hardware Program, Amazon, Intel, Qualcomm, Ford Motor Company, and Google.

Research Report:"On-Device Training Under 256KB Memory"


Related Links
MIT-IBM Watson AI Lab
TinyML Initiative
Satellite-based Internet technologies


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


INTERNET SPACE
US Supreme Court to hear cases challenging tech firm immunity
Washington (AFP) Oct 3, 2022
The US Supreme Court, in a decision with potentially far-reaching ramifications, agreed on Monday to hear two cases challenging the legal immunity of internet companies from liability for content posted by their users. One of the cases accepted by the court was filed by the family of Nohemi Gonzalez, a 23-year-old American who was one of the 130 people killed in the November 2015 Islamic State attacks in Paris. The complaint alleges that Google violated the US Anti-Terrorism Act by recommending ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

INTERNET SPACE
US flies Russian cosmonaut to ISS as Ukraine conflict rages

Micro Meat and Orbital Assembly team up on space-based food production venture

Russia space agency seeking to extend ISS participation past 2024: official

Australia seeks to grow plants on Moon by 2025

INTERNET SPACE
AFRL Commander moderates Future Of Propulsion Panel At AFA Air, Space, Cyber Conference

Rocket Lab to launch environmental monitoring satellite for General Atomics

SpinLaunch completes Flight Test 10

First successful test of the Ariane 6 upper stage at DLR Lampoldshausen

INTERNET SPACE
Sols 3614-3615: Chemin's Moment To Shine

Rover findings offer glimpse of Red Planet's ancient landscape

Curiosity targets Canaima bedrock for sampling: Sol 3612

India loses contact with budget Mars orbiter after eight years

INTERNET SPACE
Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

Space missions bring Down-to-Earth benefits

INTERNET SPACE
Kleos Observer Mission satellite cluster ready for launch integration

Satellite launch marks SpaceX's third liftoff in 2 days

Honeywell selected by Mangata Networks for control systems on new constellation

Venture Catalyst Space set to target next cohort of Australian startups

INTERNET SPACE
Solstar provides assured communications for deorbiting LEO satellites as FCC issues new order

Some everyday materials have memories, and now they can be erased

Engineers develop a new kind of shape-memory material

Studying yeast DNA in space may help protect astronauts from cosmic radiation

INTERNET SPACE
JPL developing more tools to help search for life in deep space

A day at the beach for life on other worlds

Laughing gas in space could mean life

The fountain of life: Water droplets hold the secret ingredient for building life

INTERNET SPACE
NASA's Juno gets highest-resolution close-up of Jupiter's moon Europa

Juno probe takes detailed photo of Jupiter's moon, Europa

Juno will perform close flyby of Jupiter's icy moon Europa

Planetary-scale 'heat wave' discovered in Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.