. | . |
Laser uranium enrichment technology by Staff Writers Princeton NJ (SPX) Jul 01, 2016
A new laser-based uranium enrichment technology may provide a hard-to-detect pathway to nuclear weapons production, according to a forthcoming paper in the journal Science and Global Security by Ryan Snyder, a physicist with Princeton University's Program on Science and Global Security. One example of this new third-generation laser enrichment technique may be the separation of isotopes by laser excitation (SILEX) process which was originally developed in Australia and licensed in 2012 for commercial-scale deployment in the United States to the Global Laser Enrichment consortium led by General Electric-Hitachi. Research on the relevant laser systems is also currently ongoing in Russia, India and China. The paper explains the basic physics of the new uranium separation concept, which relies on the selective laser excitation and condensation repression of uranium-235 in a gas. It also estimates the key laser performance requirements and possible operating parameters for a single enrichment unit and how a cascade of such units could be arranged into an enrichment plant able to produce weapon-grade highly enriched uranium. Using plausible assumptions, the paper shows how a covert laser enrichment plant sized to make one bomb's worth of weapon-grade material a year could use less space and energy than a similar scale plant based on almost all current centrifuge designs, the most efficient enrichment technology in use today. The results suggest a direct impact on detection methods that use size or energy use as plant footprints. Acquiring the key laser systems appears to be the main technological hurdle to states mastering this new enrichment process. The paper details some of the different lasers that, in principle, could be used for uranium enrichment. Technology export controls on possible laser systems may be hard to implement since some of the lasers have multiple applications in areas such as medicine, telecommunications, and defense. One consequence of this is that commonplace laser research and development activities could allow more countries a latent nuclear weapons capability. Snyder observes that an unexpected window of opportunity to think more carefully about the proliferation potential of the new laser technology has opened up with the April 2016 decision by General Electric-Hitachi to withdraw from the Global Laser Enrichment consortium which has stalled the commercialization effort. "We have a second chance to think about the risks of deploying new laser-based uranium enrichment technologies on a laboratory or industrial scale," said Snyder. "Previously developed technologies that provided pathways to nuclear weapons such as gaseous diffusion and gas centrifuges have spread to other countries, and the same should be expected with laser enrichment if commercial deployment of this new technology is successfully demonstrated." The paper concludes with the suggestion that attention should be focused on regulating laser systems capable of enriching uranium to weapon-grade levels, otherwise such lasers may come to pose proliferation concerns comparable to if not greater than gas centrifuge development or plutonium reprocessing today. The paper, "A Proliferation Assessment of Third Generation Laser Enrichment Technology," will be published in Science and Global Security.
Related Links Princeton University, Woodrow Wilson School of Public and International Affairs Learn about nuclear weapons doctrine and defense at SpaceWar.com Learn about missile defense at SpaceWar.com All about missiles at SpaceWar.com Learn about the Superpowers of the 21st Century at SpaceWar.com
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |