. 24/7 Space News .
TIME AND SPACE
Laser solid-phase synthesis of single atom catalysts
by Staff Writers
Changchun, China (SPX) Sep 09, 2021

stock illustration only

Laser fabrication of nanoparticles offers a powerful and flexible alternative to the purely chemical approaches. In recent years, laser synthesized precious metal nanoparticles are becoming increasingly important in catalysis due to their unique surface features. In order to minimize the consumption of expensive precious metal-based materials and maximize the utilization of active species in various electrochemical catalysis, effort has been devoted to designing nanoscale and atomic scale materials.

As the size of metal nanoparticles decreases to a few nanometers, or down to atomic levels, their catalytic performance can be effectively improved due to increased number of exposed surface atoms. However, the synthesis of metal particles of less than 2 nm remains challenging and atomically dispersed species via laser-based liquid-phase techniques had not been successful, as the nucleation and crystal growth in liquid can be hardly prevented without effective confinement of the reactants.

Following the recent work published in Advanced Functional Materials, 30, 2001756, 2020 on laser assisted liquid-phase synthesis of 2 nm Pt nanoparticles on reduced graphene oxide for high performance electrocatalysis, the team at The University of Manchester, UK, including Yudong Peng as a key researcher in his PhD project, led by Professor Zhu Liu, aimed to further decrease the Pt size down to a single atomic level.

In a new paper published in the recent issue of Light Science and Application, the team has developed a unique laser synthetic capability and demonstrated high efficacy of this technique for preparing Pt single atom catalysts (SACs) grown directly onto a reduced graphene oxide support material.

In this approach, the Pt-EGO (electrochemical graphene oxide) samples are prepared by freeze-drying H2PtCl6 infused EGO hydrogel films to form "isolated dispersion" of H2PtCl6 precursors on the EGO substrate, which is essential to achieve the atomically dispersed Pt followed by laser irradiation using nanosecond pulsed 1064 nm laser or picosecond pulsed 355 nm laser.

Additionally, the fast laser scanning leads to rapid heating and cooling processes that prevent the migration of the Pt atoms. The team has demonstrated that such a single atom catalyst has a small overpotential of 42.3 mV at 10 mA cm-2 in hydrogen evolution reaction and a mass activity tenfold higher than that of the commercial Pt/C catalyst.

"In fighting against climate change and to realize carbon neutral in our society, catalysts play a very important role in a variety of applications including energy conversion (e.g. hydrogen evolution) and carbon neutral reactions (e.g. CO2 reduction). In the field of laser synthesis of new materials, researchers have been working towards breaking the size limit into the atomic level.

"We have shown a rapid, versatile, solid-phase laser manufacturing technique for synthesizing graphene supported Pt single atom catalyst, setting a new record for laser-based atomic level material synthesis. This technique would open up a new route for the production of a variety of single atoms on different substrates, and holds a promising potential for roll-to-roll manufacturing of high throughput catalysts. Other potential applications are yet to be explored.", the team added.

Research paper


Related Links
Light Publishing Center, Changchun Institute Of Optics, Fine Mechanics And Physics, CAS
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Researchers reveal a novel metal where electrons flow with fluid-like dynamics
Chestnut Hill MA (SPX) Sep 07, 2021
A team of researchers from Boston College has created a new metallic specimen where the motion of electrons flows in the same way water flows in a pipe - fundamentally changing from particle-like to fluid-like dynamics, the team reports in Nature Communications. Working with colleagues from the University of Texas at Dallas and Florida State University, Boston College Assistant Professor of Physics Fazel Tafti found in the metal superconductor, a synthesis of Niobium and Germanium (NbGe2), that a ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
German ESA astronaut Matthias Maurer is ready for his first ISS mission - 'Cosmic Kiss'

Dates set for Space Station change of command as Franco-German relations awarded Media prize

Next generation of Orion spacecraft in production for future Artemis missions

Two astronauts return to ISS after 7-Hour Spacewalk

TIME AND SPACE
NASA awards launch services contract for GOES-U Mission

SpaceX's Inspiration4 civilian crew hopes mission will inspire world

SpaceX's first tourists all set for 'camper van' trip to space

A billionaire, a cancer survivor... Who will be on the next SpaceX mission?

TIME AND SPACE
NASA's Perseverance rover collects puzzle pieces of Mars' history

Mars rocks collected by Perseverance boost case for ancient life

Mars rover's first rock samples reveal lengthy water exposure

NASA Mars mission begins a new chapter of science with a new leader

TIME AND SPACE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

TIME AND SPACE
India to revise FDI policy for space sector, says ISRO chief Sivan

Russian Soyuz rocket launches 34 new UK satellites

China launches Zhongxing-9B satellite

Hughes and OneWeb announce agreements for low earth Orbit satellite service in US and India

TIME AND SPACE
NASA provides laser for LISA mission

TPY-4 Radar earns official US Government Designation

Global computing's carbon footprint is bigger than previously estimated

Ballistic air guns and mock moon rocks aid in search for durable space fabrics

TIME AND SPACE
Earthlike planets in other solar systems? Look for moons

Antennas searching for ET threatened by wildfire

The first cells might have used temperature to divide

Cold planets exist throughout our Galaxy, even in the Galactic bulge

TIME AND SPACE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.