Subscribe free to our newsletters via your
. 24/7 Space News .




CHIP TECH
Laser-induced graphene 'super' for electronics
by Staff Writers
Houston TX (SPX) Jan 15, 2015


An electron microscope image shows the cross section of laser-induced graphene burned into both sides of a polyimide substrate. The flexible material created at Rice University has the potential for use in electronics or for energy storage. Click on the image for a larger version. Image courtesy of the Tour Group.

Rice University scientists advanced their recent development of laser-induced graphene (LIG) by producing and testing stacked, three-dimensional supercapacitors, energy-storage devices that are important for portable, flexible electronics.

The Rice lab of chemist James Tour discovered last year that firing a laser at an inexpensive polymer burned off other elements and left a film of porous graphene, the much-studied atom-thick lattice of carbon. The researchers viewed the porous, conductive material as a perfect electrode for supercapacitors or electronic circuits.

To prove it, members of the Tour group have since extended their work to make vertically aligned supercapacitors with laser-induced graphene on both sides of a polymer sheet. The sections are then stacked with solid electrolytes in between for a multilayer sandwich with multiple microsupercapacitors.

The flexible stacks show excellent energy-storage capacity and power potential and can be scaled up for commercial applications. LIG can be made in air at ambient temperature, perhaps in industrial quantities through roll-to-roll processes, Tour said.

The research was reported this week in Applied Materials and Interfaces.

Capacitors use an electrostatic charge to store energy they can release quickly, to a camera's flash, for example. Unlike chemical-based rechargeable batteries, capacitors charge fast and release all their energy at once when triggered. But chemical batteries hold far more energy. Supercapacitors combine useful qualities of both - the fast charge/discharge of capacitors and high-energy capacity of batteries - into one package.

LIG supercapacitors appear able to do all that with the added benefits of flexibility and scalability. The flexibility ensures they can easily conform to varied packages - they can be rolled within a cylinder, for instance - without giving up any of the device's performance.

"What we've made are comparable to microsupercapacitors being commercialized now, but our ability to put devices into a 3-D configuration allows us to pack a lot of them into a very small area," Tour said. "We simply stack them up.

"The other key is that we're doing this very simply. Nothing about the process requires a clean room. It's done on a commercial laser system, as found in routine machine shops, in the open air."

Ripples, wrinkles and sub-10-nanometer pores in the surface and atomic-level imperfections give LIG its ability to store a lot of energy. But the graphene retains its ability to move electrons quickly and gives it the quick charge-and-release characteristics of a supercapacitor. In testing, the researchers charged and discharged the devices for thousands of cycles with almost no loss of capacitance.

To show how well their supercapacitors scale up for applications, the researchers wired pairs of each variety of device in serial and parallel. As expected, they found the serial devices delivered double the working voltage, while the parallels doubled the discharge time at the same current density.

The vertical supercapacitors showed almost no change in electrical performance when flexed, even after 8,000 bending cycles.

Tour said that while thin-film lithium ion batteries are able to store more energy, LIG supercapacitors of the same size offer three times the performance in power (the speed at which energy flows). And the LIG devices can easily scale up for increased capacity.

"We've demonstrated that these are going to be excellent components of the flexible electronics that will soon be embedded in clothing and consumer goods," he said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Rice University
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Toward quantum chips
Boston MA (SPX) Jan 13, 2015
A team of researchers has built an array of light detectors sensitive enough to register the arrival of individual light particles, or photons, and mounted them on a silicon optical chip. Such arrays are crucial components of devices that use photons to perform quantum computations. Single-photon detectors are notoriously temperamental: Of 100 deposited on a chip using standard manufacturi ... read more


CHIP TECH
Service Module of Chinese Probe Enters Lunar Orbit

Service module of China's lunar orbiter enters 127-minute orbit

Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

CHIP TECH
Crystal-Rich Rock 'Mojave' is Next Mars Drill Target

Team Working on Strategy to Fix Flash Memory Issue

Lost and found in space: Beagle 2 seen on Mars 11 years on

UA-led HiRISE camera spots long-lost space probe on Mars

CHIP TECH
US venture capital funding near dot-com boom levels

Long duration weightlessness in space induces a blood shift

Experts explore the medical safety needs of civilian space travel

Singer Sarah Brightman delays space tourist training

CHIP TECH
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

CHIP TECH
Astronauts' year-long mission will test limits

Astronauts prepare for year-long stay on space station

Russian Cargo Spacecraft to Supply ISS With Black Caviar

Astronauts take shelter after alarm at space station

CHIP TECH
Firefly Space Systems and NASA have Inked Space Act Agreement

SpaceX CEO Elon Musk wants to shake up satellite industry

Vega ready to launch ESA spaceplane

Russian firm seals $1 billion deal to supply US rocket engines

CHIP TECH
Three-Planet System Holds Clues to Atmospheres of Earth-size Worlds

Meteorites weren't exactly the building blocks of young planets

A twist on planetary origins

NameExoWorlds contest opens

CHIP TECH
Atomic placement of elements counts for strong concrete

Scientists build rice grain-sized laser powered by quantum dots

A novel inorganic material emitting laser light in solution is discovered

Zinc oxide materials tapped for tiny energy harvesting devices




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.