. 24/7 Space News .
TECH SPACE
Laser-altered molecules cast alchemy in a different light
by Staff Writers
Princeton NJ (SPX) Mar 01, 2017


Study co-authors from left to right: Renan Cabrera, Herschel Rabitz, Denys Bondar, and Andre Campos Image courtesy C. Todd Reichart, Department of Chemistry at Princeton University.

Since the Middle Ages, alchemists have sought to transmute elements, the most famous example being the long quest to turn lead into gold. Transmutation has been realized in modern times, but on a minute scale using a massive particle accelerator.

Now, theorists at Princeton University have proposed a different approach to this ancient ambition - just make one material behave like another. A computational theory published Feb. 24 in the journal Physical Review Letters demonstrates that any two systems can be made to look alike, even if just for the smallest fraction of a second.

In this context, for two objects to "look" like each other, they need to reflect light in the same way. The Princeton researchers' method involves using light to make non-permanent changes to a substance's molecules so that they mimic the reflective properties of another substance's molecules.

This ability could have implications for optical computing, a type of computing in which electrons are replaced by photons that could greatly enhance processing power but has proven extremely difficult to engineer. It also could be applied to molecular detection and experiments in which expensive samples could be replaced by cheaper alternatives.

"It was a big shock for us that such a general statement as 'any two objects can be made to look alike' could be made," said co-author Denys Bondar, an associate research scholar in the laboratory of co-author Herschel Rabitz, Princeton's Charles Phelps Smyth '16 *17 Professor of Chemistry.

The Princeton researchers posited that they could control the light that bounces off a molecule or any substance by controlling the light shone on it, which would allow them to alter how it looks. This type of manipulation requires a powerful light source such as an ultrafast laser and would last for only a femtosecond, or one quadrillionth of a second. Unlike normal light sources, this ultrafast laser pulse is strong enough to interact with molecules and distort their electron cloud while not actually changing their identity.

"The light emitted by a molecule depends on the shape of its electron cloud, which can be sculptured by modern lasers," Bondar said.

Using advanced computational theory, the research team developed a method called "spectral dynamic mimicry" that allowed them to calculate the laser pulse shape, which includes timing and wavelength, to produce any desired spectral output. In other words, making any two systems look alike.

Conversely, this spectral control could also be used to make two systems look as different from one another as possible. This differentiation, the researchers suggested, could prove valuable for applications of molecular detections such as identifying toxic versus safe chemicals.

Shaul Mukamel, a chemistry professor at the University of California-Irvine, said that the Princeton research is a step forward in an important and active research field called coherent control, in which light can be manipulated to control behavior at the molecular level.

Mukamel, who has collaborated with the Rabitz lab but was not involved in the current work, said that the Rabitz group has had a prominent role in this field for decades, advancing technology such as quantum computing and using light to drive artificial chemical reactivity.

"It's a very general and nice application of coherent control," Mukamel said. "It demonstrates that you can, by shaping the optical paths, bring the molecules to do things that you want beforehand - it could potentially be very significant."

Research paper: "Making distinct dynamical systems appear spectrally identical"

TECH SPACE
New 'tougher-than-metal' fiber-reinforced hydrogels
Sapporo, Japan (SPX) Feb 28, 2017
Efforts are currently underway around the world to create materials that are friendly to both society and the environment. Among them are those that comprise different materials, which exhibit the merits of each component. Hokkaido University researchers, led by Professor Jian Ping Gong, have focused on creating a reinforced material using hydrogels. Though such a substance has potential a ... read more

Related Links
Princeton University
Space Technology News - Applications and Research


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
How bright is the future of space food

Marshall shakes, packs, ships and tracks NASA payloads

Guardsmen to test space capsule recovery systems

NASA and SpaceX gives ASU a competitive edge in technological innovation

TECH SPACE
SpaceX says it will fly civilians to the moon next year

Flight Hardware for NASA's Space Launch System on Its Way to Cape

Spacex To Send Privately Crewed Dragon Spacecraft Beyond The Moon Next Year

Sounding Rocket Flies in Alaska to Study Auroras

TECH SPACE
Martian Winds Carve Mountains, Move Dust, Raise Dust

Science checkout continues for ExoMars orbiter

More Earth-like than moon-like

NASA Explores Opportunity for Smaller Experiments to 'Hitch a Ride' to Mars

TECH SPACE
China to launch first high-throughput communications satellite in April

Chinese cargo spacecraft set for liftoff in April

China looks to Mars, Jupiter exploration

China's first cargo spacecraft to leave factory

TECH SPACE
Kacific places order with Boeing for a high throughput satellite

ESA affirms Open Access policy for images, videos and data

Iridium Announces Target Date for Second Launch of Iridium NEXT

Italy, Russia working closely on Mars exploration, Earth monitoring satellites

TECH SPACE
When Rocket Science Meets X-ray Science

York Space partners with Metropolitan State for Denver satellite facility

New 'tougher-than-metal' fiber-reinforced hydrogels

Raytheon gets contract for Silent Knight radar systems

TECH SPACE
Volcanic hydrogen spurs chances of finding exoplanet life

Evidence of Star Wars-like Planetary System

The missing link in how planets form

Does Pluto Have The Ingredients For Life?

TECH SPACE
Juno to remain in current orbit at Jupiter

Europa Flyby Mission Moves into Design Phase

NASA receives science report on Europa lander concept

New Horizons Refines Course for Next Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.