. 24/7 Space News .
CARBON WORLDS
Land-building marsh plants are champions of carbon capture
by Staff Writers
Durham NC (SPX) May 06, 2022

Acre for acre, a salt marsh like this one in the Netherlands' Western Scheldt estuary, stores five times more carbon than a forest.

Human activities such as marsh draining for agriculture and logging are increasingly eating away at saltwater and freshwater wetlands that cover only 1% of Earth's surface but store more than 20% of all the climate-warming carbon dioxide absorbed by ecosystems worldwide.

A new study published May 6 in Science by a team of Dutch, American and German scientists shows that it's not too late to reverse the losses.

The key to success, the paper's authors say, is using innovative restoration practices - identified in the new paper - that replicate natural landscape-building processes and enhance the restored wetlands' carbon-storing potential.

And doing it on a large scale.

"About 1 percent of the world's wetlands are being lost each year to pollution or marsh draining for agriculture, development and other human activities," said Brian R. Silliman, Rachel Carson Distinguished Professor of Marine Conservation Biology at Duke University, who coauthored the study.

"Once disturbed, these wetlands release enormous amounts of CO2 from their soils, accounting for about 5 percent of global CO2 emissions annually," Silliman said. "Hundreds, even thousands of years of stored carbon are exposed to air and start to rapidly decompose and release greenhouse gases. The result is an invisible reverse waterfall of CO2 draining into the atmosphere. The wetlands switch from being carbon sinks to sources."

"The good news is, we now know how to restore these wetlands at a scale that was never before possible and in a way that both stops this release of carbon and re-establishes the wetland's carbon storing capacity," he said.

What makes most wetlands so effective at carbon storage is that they are formed and held together by plants that grow close to each other, Silliman explained. Their dense above- and below-ground mats of stems and roots trap nutrient-rich debris and defend the soil against erosion or drying out - all of which helps the plants to grow better and the soil layer to build up, locking in a lot more CO2 in the process.

In the case of raised peat bogs, the process works a little differently, Silliman noted. Layers of living peat moss on the surface act as sponges, holding enormous amounts of rainwater that sustain its own growth and keeps a much thicker layer of dead peat moss below it permanently under water. This prevents the lower layer of peat, which can measure up to 10 meters thick, from drying out, decomposing, and releasing its stored carbon back into the atmosphere. As the living mosses gradually build up, the amount of carbon stored below ground continually grows.

Successful restorations must replicate these processes, he said.

"More than half of all wetland restorations fail because the landscape-forming properties of the plants are insufficiently taken into account," said study coauthor Tjisse van der Heide of the Royal Institute for Sea Research and the University of Groningen in the Netherlands. Planting seedlings and plugs in orderly rows equidistant from each other may seem logical, but it's counter-productive, he said.

"Restoration is much more successful when the plants are placed in large dense clumps, when their landscape-forming properties are mimicked, or simply when very large areas are restored in one go," van der Heide said.

"Following this guidance will allow us to restore lost wetlands at a much larger scale and increase the odds that they will thrive and continue to store carbon and perform other vital ecosystem services for years to come," Silliman said. "The plants win, the planet wins, we all win."

Silliman and van der Heide conducted the new study with scientists from the Netherlands' Royal Institute for Sea Research, Utrecht University, Radboud University, the University of Groningen, the University of Florida, Duke University, and Greifswald University.

By synthesizing data on carbon capture from recent scientific studies, they found that oceans and forests hold the most CO2 globally, followed by wetlands.

"But when we looked at the amount of CO2 stored per square meter, it turned out that wetlands store about five times more CO2 than forests and as much as 500 times more than oceans," says Ralph Temmink, a researcher at Utrecht University, who was first author on the study.

Funding for the new study came from the Dutch Research Council, the Oak Foundation, Duke RESTORE, the Lenfest Ocean Program, the National Science Foundation, and Natuurmonumenten.

In addition to his faculty appointment at Duke's Nicholas School, Silliman is director of Duke RESTORE.

Research Report:Recovering Wetland Biogeomorphic Feedbacks to Restore the World's Biotic Carbon Hotspots


Related Links
Duke University - Nicholas School of the Environment
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Hybrid electro-biosystem upcycles carbon dioxide into energy-rich long-chain compounds
Shenzhen, China (SPX) Apr 29, 2022
Artificial upcycling of carbon dioxide (CO2) into value-added products in a sustainable manner represents an opportunity to tackle environmental issues and realize a circular economy. However, compared with facilely available C1/C2 products, efficient and sustainable synthesis of energy-rich long-chain compounds from CO2 still remains a huge challenge. A joint research team led by Prof. XIA Chuan from the University of Electronic Science and Technology of China, Prof. YU Tao from the Shenzhe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
New Airbnb feature aims to 'redistribute' tourists from oversold venues

Space For Humanity to send its first Citizen Astronaut on next New Shepard flight

Astronaut crew returns to Earth after six months on ISS

Astronaut crew returning to Earth after six months on ISS

CARBON WORLDS
Musk secures $7.1 bn to finance Twitter deal

Briton, Belarusian held at Kazakh spaceport: Roscosmos

NASA identifies Artemis 1 rocket issues, plans another wet dress rehearsal for June

Maritime Launch plans inaugural flight for 2023

CARBON WORLDS
NASA's Ingenuity in contact with Perseverance after communications dropout

Solving the mystery of frost hiding on Mars

All the science in half the time: Sols 3464-3465

To sample or not to sample

CARBON WORLDS
China launches the Tianzhou 4 cargo spacecraft

China launches Jilin-1 commercial satellites

China opens Shenzhou-13 return capsule

NASA Chief slams China's refusal to cooperate with US

CARBON WORLDS
Rocket Lab launches BRO-6 for Unseenlabs

Japanese radar constellation iQPS selects Virgin Orbit for 2023 launch

AST SpaceMobile announces $75M committed equity facility

Satellogic announces multiple launch agreement with SpaceX

CARBON WORLDS
Failed eruptions are at the origin of copper deposits

Reusable UV sensor films - TU Dresden spin-off project PRUUVE launched

Unexpected bubbleology

'Like family': Japan's virtual YouTubers make millions from fans

CARBON WORLDS
SwRI-led team finds younger exoplanets better candidates when looking for other Earths

Stanford scientists describe a gravity telescope that could image exoplanets

Discovery of 30 exocomets in a young planetary system

Origin of complex cells started without oxygen

CARBON WORLDS
Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study

Abundant features on Europa bodes well for search for extraterrestrial life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.