. 24/7 Space News .
ROBO SPACE
Kirigami robotic grippers are delicate enough to lift egg yolks
by Staff Writers
Raleigh NC (SPX) Jan 27, 2022

Engineering researchers from North Carolina State University have demonstrated a new type of flexible, robotic grippers that are able to lift delicate egg yolks without breaking them, and that are precise enough to lift a human hair.

Engineering researchers from North Carolina State University have demonstrated a new type of flexible, robotic grippers that are able to lift delicate egg yolks without breaking them, and that are precise enough to lift a human hair. The work has applications for both soft robotics and biomedical technologies.

The work draws on the art of kirigami, which involves both cutting and folding two-dimensional (2D) sheets of material to form three-dimensional (3D) shapes. Specifically, the researchers have developed a new technique that involves using kirigami to convert 2D sheets into curved 3D structures by cutting parallel slits across much of the material. The final shape of the 3D structure is determined in large part by the outer boundary of the material. For example, a 2D material that has a circular boundary would form a spherical 3D shape.

"We have defined and demonstrated a model that allows users to work backwards," says Yaoye Hong, first author of a paper on the work and a Ph.D. student at NC State. "If users know what sort of curved, 3D structure they need, they can use our approach to determine the boundary shape and pattern of slits they need to use in the 2D material. And additional control of the final structure is made possible by controlling the direction in which the material is pushed or pulled."

"Our technique is quite a bit simpler than previous techniques for converting 2D materials into curved 3D structures, and it allows designers to create a wide variety of customized structures from 2D materials," says Jie Yin, corresponding author of the paper and an associate professor of mechanical and aerospace engineering at NC State.

The researchers demonstrated the utility of their technique by creating grippers capable of grabbing and lifting objects ranging from egg yolks to a human hair.

"We've shown that our technique can be used to create tools capable of grasping and moving even extremely fragile objects," Yin says.

"Conventional grippers grasp an object firmly - they grab things by putting pressure on them," Yin says. "That can pose problems when attempting to grip fragile objects, such as egg yolks. But our grippers essentially surround an object and then lift it - similar to the way we cup our hands around an object. This allows us to 'grip' and move even delicate objects, without sacrificing precision."

However, the researchers note that there are a host of other potential applications, such as using the technique to design biomedical technologies that conform to the shape of a joint - like the human knee.

"Think of smart bandages or monitoring devices capable of bending and moving with your knee or elbow," Yin says.

"This is proof-of-concept work that shows our technique works," Yin says. "We're now in the process of integrating this technique into soft robotics technologies to address industrial challenges. We are also exploring how this technique could be used to create devices that could be used to apply warmth to the human knee, which would have therapeutic applications.

"We're open to working with industry partners to explore additional applications and to find ways to move this approach from the lab into practical use."

The paper, "Boundary Curvature Guided Programmable Shape-Morphing Kirigami Sheets," will be published in the journal Nature Communications on Jan. 26. The paper is co-authored by Yong Zhu, the Andrew A. Adams Distinguished Professor of Mechanical and Aerospace Engineering at NC State; and by Yinding Chi, Shuang Wu, Yanbin Li, all of whom are Ph.D. students at NC State. The work was done with support from the National Science Foundation under grants 2005374 and 2013993.

Research Report: "Boundary Curvature Guided Programmable Shape-Morphing Kirigami Sheets"


Related Links
North Carolina State University
All about the robots on Earth and beyond!


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ROBO SPACE
Enabling artificial intelligence on satellites
Gothenburg, Sweden (SPX) Jan 25, 2022
Swarms of hundreds or thousands of small satellites are increasingly used for bringing data and internet services to Earth. To position, communicate and dispose such large amounts of satellites, Artificial Intelligence is getting increasingly important. To enable a large-scale use of Artificial Intelligence in orbit, RUAG Space, Europe's leading supplier to the space industry, and Stream Analyze, recognized as one of Sweden's leading tech startups, are teaming up. They have agreed to combine ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ROBO SPACE
Beaming with science

SCOUT releases autonomy software to enable safer and less complex space operations

US undermines safety of Russian cosmonaut's at ISS by denying visa, Roscosmos says

Five Space Station Research Results Contributing to Deep Space Exploration

ROBO SPACE
SpaceX scrubs Italian satellite launch third day in row

SpaceX scrubs launch of Italian satellite from Florida, will try again Friday

SpaceX again scrubs launch of Italian satellite

SpaceX to crash Falcon 9 rocket into Moon

ROBO SPACE
Making a splash in a lava sea

New control technique uses solar panels to reach desired Mars orbit

Hope for present-day Martian groundwater dries up

How to Retain a Core

ROBO SPACE
China to explore more in space science next five years: White paper

China's rocket technology hits the ski slopes

China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

ROBO SPACE
Blue Origin set to acquire Honeybee Robotics

Advances in Space Transportation Systems Transforming Space Coast

EU launches 'game changer' space startup fund

Summit to ignite Europe's bold space ambitions

ROBO SPACE
ESA has the tension on the pull

A leap forward for terahertz lasers

Lion will roam above the planet - KP Labs to release their "king of orbit"

How big does your quantum computer need to be?

ROBO SPACE
A planetary dynamical crime scene at 14 Herculis

Scientists are a step closer to finding planets like Earth

TESS Science Office at MIT hits milestone of 5,000 exoplanet candidates

Ironing out the interiors of exoplanets

ROBO SPACE
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.