. 24/7 Space News .
STELLAR CHEMISTRY
Kilonova discovery challenges our understanding of gamma-ray bursts
by Staff Writers
Washington DC (SPX) Dec 08, 2022

This Gemini North image, superimposed on an image taken with the Hubble Space Telescope, shows the telltale near-infrared afterglow of a kilonova produced by a long GRB (GRB 211211A). This discovery challenges the prevailing theory that long GRBs exclusively come from supernovae, the end-of-life explosions of massive stars.

While studying the aftermath of a long gamma-ray burst (GRB), two independent teams of astronomers using a host of telescopes in space and on Earth, including the Gemini North telescope on Hawai'i and the Gemini South telescope in Chile, have uncovered the unexpected hallmarks of a kilonova, the colossal explosion triggered by colliding neutron stars. This discovery challenges the prevailing theory that long GRBs exclusively come from supernovae, the end-of-life explosions of massive stars.

Gamma-ray bursts (GRBs) - the most energetic explosions in the Universe - come in two varieties, long and short. Long GRBs, which last a couple of seconds to one minute, form when a star at least 10 times the mass of our Sun explodes as a supernova. Short GRBs, which last less than two seconds, occur when two compact objects, like two neutron stars or a neutron star and a black hole, collide to form a kilonova.

While observing the aftermath of a long GRB detected in 2021, two independent teams of astronomers found the surprising signs of a neutron-star merger rather than the expected signal of a supernova. This surprising result marks the first time that a kilonova has been associated with a long GRB and challenges our understanding of these phenomenally powerful explosions.

The first team to announce this discovery was led by Jillian Rastinejad, a PhD student at Northwestern University. Rastinejad and her colleagues made this startling discovery with the help of Gemini North, part of the International Gemini Observatory, which is operated by NSF's NOIRLab. The Gemini North observations revealed a telltale near-infrared afterglow at the precise location of the GRB, providing the first compelling evidence of a kilonova associated with this event [1]. Rastinejad's team promptly reported their Gemini detection in a Gamma-ray Coordinates Network (GCN) Circular.

Astronomers around the world were first alerted to this burst, named GRB 211211A, when a powerful flash of gamma rays was picked up by NASA's Neil Gehrels Swift Observatory and Fermi Gamma-ray Space Telescope. Initial observations revealed that the GRB was uncommonly nearby, a mere one billion light-years from Earth.

Most GRBs originate in the distant, early Universe. Typically, these objects are so ancient and far flung that their light would have had to travel for more than six billion years to reach Earth. Light from the most-distant GRB ever recorded traveled for nearly 13 billion years before being detected here on Earth [2]. The relative proximity of this newly discovered GRB enabled astronomers to make remarkably detailed follow-up studies with a variety of ground- and space-based telescopes.

"Astronomers usually investigate short GRBs when hunting for kilonovae," said Rastinejad. "We were drawn to this longer-duration burst because it was so close that we could study it in detail. Its gamma rays also resembled those of a previous, mysterious supernova-less long GRB."

A unique observational signature of kilonovae is their brightness at near-infrared wavelengths compared to their brightness in visible light. This difference in brightness is due to the heavy elements ejected by the kilonova, which effectively block visible light but allow the longer-wavelength infrared light to pass unimpeded. Observing in the near-infrared, however, is technically challenging and only a handful of telescopes on Earth, like the twin Gemini telescopes, are sensitive enough to detect this kilonova at these wavelengths.

"Thanks to its sensitivity and our rapid-response, Gemini was the first to detect this kilonova in the near-infrared, convincing us that we were observing a neutron-star merger," said Rastinejad. "Gemini's nimble capabilities and variety of instruments let us tailor each night's observing plan based on the previous night's results, allowing us to make the most of every minute that our target was observable."

Another team, led by Eleonora Troja, an astronomer at the University of Rome Tor Vergata, independently studied the afterglow using a different and a different series of observations, including the Gemini Southtelescope in Chile, [3] and independently concluded that the long GRB came from a kilonova.

"We were able to observe this event only because it was so close to us," said Troja. "It is very rare that we observe such powerful explosions in our cosmic backyard, and every time we do we learn about the most extreme objects in the Universe."

The fact that two different teams of scientists working with independent datasets both arrived at the same conclusion about the kilonova nature of this GRB provides confidence in this interpretation.

"The kilonova interpretation was so far off from everything we knew about long GRBs that we could not believe our own eyes and spent months testing all the other possibilities," said Troja. "It is only after ruling out everything else that we realized our decade-long paradigm had to be revised."

As well as contributing to our understanding of kilonovae and GRBs, this discovery provides astronomers with a new way to study the formation of gold and other heavy elements in the Universe. The extreme physical conditions in kilonovae produce heavy elements such as gold, platinum, and thorium. Astronomers can now identify the sites that are creating heavy elements by searching for the signature of a kilonova following a long-duration gamma-ray burst.

"This discovery is a clear reminder that the Universe is never fully figured out," said Rastinejad. "Astronomers often take it for granted that the origins of GRBs can be identified by how long the GRBs are, but this discovery shows us there's still much more to understand about these amazing events."

"NSF congratulates the science teams for this new and exciting discovery, opening a new window onto cosmic evolution," said National Science Foundation Director Sethuraman Panchanathan. "The International Gemini Observatory continues to deliver powerful and nimble resources open to the whole scientific community through innovation and partnership."

The International Gemini Observatory is operated by a partnership of six countries, including the United States through the National Science Foundation, Canada through the National Research Council of Canada, Chile through the Agencia Nacional de Investigacion y Desarrollo, Brazil through the Ministerio da Ciencia, Tecnologia e Inovacoes, Argentina through the Ministerio de Ciencia, Tecnologia e Innovacion, and Korea through the Korea Astronomy and Space Science Institute. These Participants and the University of Hawaii, which has regular access to Gemini, each maintain a National Gemini Office to support their local users.

Research Report:"A kilonova following a long-duration gamma-ray burst at 350 Mpc."


Related Links
Association of Universities for Research in Astronomy (AURA)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Unusual gamma-ray burst reveals previously undetected hybrid neutron-star merger event
Los Alamos NM (SPX) Dec 08, 2022
The standard view of gamma-ray bursts as a signature for different types of dying stars might need a rewrite. Recent astronomical observations, supported by theoretical modeling, reveal a new observational fingerprint of neutron-star mergers, which may shed light on the production of heavy elements throughout the universe. "Astronomers have long believed that gamma-ray bursts fell into two categories: long-duration bursts from imploding stars and short-duration bursts from merging compact stellar ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NSF-funded solicitation seeks physical science proposals to utilize ISS National Lab

NASA taps Collins Aerospace to develop new spacesuits for Space Station

These freeze-drying algae can awaken from cryostasis, could help spaceflights go farther

Collins Aerospace to deliver new spacesuits to NASA for International Space Station missions

STELLAR CHEMISTRY
China launches Long March 2D carrier rocket

Arctic Sweden in race for Europe's satellite launches

From Shetlands to Azores, Europe's space race takes off

Launches secured for five Sentinel satellites

STELLAR CHEMISTRY
Martian dust devil analogues in the Mojave Desert #ASA183

Evaluating a Possible Drill Location

Sol 3676 Another: 'Bore-ing' Day on Mars

Tiny underwater sand dunes may shed light on larger terrestrial and Martian formations

STELLAR CHEMISTRY
China's new space station opens for business in an increasingly competitive era of space activity

Nations step up space cooperation

China's Shenzhou-14 astronauts return safely, accomplishing many "firsts"

China's deep space exploration laboratory eyes top talents worldwide

STELLAR CHEMISTRY
Spirent brings realistic testing to emerging LEO satellite applications

SpaceX launches 40 Internet satellites for rival OneWeb into orbit

Slingshot Aerospace raises $40M in oversubscribed Series A2 funding round

Sidus Space selects Exolaunch for LizzieSat Deployment

STELLAR CHEMISTRY
Phantoms return from beyond the Moon with valuable data on cosmic radiation doses

Deep-space optical communication demonstration project forges ahead

NOAA approves Maxar to provide non-earth imaging services to government and commercial customers

Terran Orbital assists demonstration of 1.4 Terabyte Single-Pass Optical Downlink for Pathfinder TD3 Satellite

STELLAR CHEMISTRY
How the 'hell planet' got so hot

Southern hemisphere's biggest radio telescope begins search for ET signatures

An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

STELLAR CHEMISTRY
The PI's Perspective: Extended Mission 2 Begins!

NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.