. 24/7 Space News .
EARTH OBSERVATION
Kilometer-scale modeling better reflects the relationship between land and precipitation
by Staff Writers
Beijing, China (SPX) Dec 06, 2022

file illustration only

The technique referred to as "dynamical downscaling", which involves the use of regional climate models to dynamically infer the effects of large-scale climate processes at local scales, has proved to be an effective way to simulate precipitation at high resolution. Moreover, with advancements in supercomputing capabilities, dynamical downscaling is now progressing to the kilometer scale.

Previous studies have shown that kilometer-scale dynamical downscaling models (DDMs) capture precipitation characteristics more realistically than DDMs operating at scales of several tens of kilometers. However, our understanding of the mechanism behind the advantages of kilometer-scale simulation remains limited.

Professor Yanhong Gao and her research team from Fudan University, China, have explored a large number of DDMs at quarter-degree resolution (approximately 25-30 km), and took the lead in conducting 4-km grid spacing simulations over the Tibetan Plateau.

Then, more recently, they conducted experiments with two DDMs at the 2-km scale and the traditional quarter-degree resolution in a domain covering the densely populated and economically developed region of eastern China. The relationships between topography and precipitation were established using the method of "multi-scale geographically weighted regression" (MGWR), and the results were evaluated against weather station observations.

Firstly, they reconfirmed that kilometer-scale DDMs better describe the observed precipitation characteristics than DDMs operating at quarter-degree resolution. Then, delving deeper into the reasons why, it was found that the small-scale topography played a dominant role in the observed precipitation distribution at most weather stations in eastern China, and the kilometer-scale DDM reproduced these observed effects of topography on precipitation more accurately than the quarter-degree DDM. These results have been published in Atmospheric and Oceanic Science Letters.

The important influences of topography on the formation and distribution of precipitation have been recognized in many studies. Based on this consensus, Prof. Gao and her team selected five topographical factors commonly used in studies of the relationships between topography and precipitation-namely, topographical elevation, topographical slope, topographical relief, distance from coastline, and prevailing wind direction.

Several regression methods were compared and the MGWR method was found to perform the best in exhibiting the influence of the topographical factors on the spatial distribution of precipitation. This was because of its advantages in reflecting the scale effects of the different factors on the distribution of the precipitation based on the bandwidth; that is, a factor with a smaller bandwidth had a stronger influence on the spatial heterogeneity of precipitation.

According to the weather station observations, the topographical relief, topographical elevation, and distance from the coastline all had small bandwidths and showed important influences on the heterogeneity of the precipitation distribution in eastern China. Among them, the topographical relief was the dominant local factor at about 3/4 of the stations.

"Compared with the quarter-degree DDM, the kilometer-scale simulation had the advantages of a finer horizontal resolution and, furthermore, it was able to more precisely describe the sub-grid topographical features and capture the influences of sub-grid surface variations in precipitation. The discrepancies arising from coarse-resolution modeling of the topography-precipitation relationship might be a cause of mismatched precipitation between observations and simulations," explains Prof. Gao. "This implies a potential way forward for improving the simulation of precipitation."

By expounding the mechanisms underpinning the differences between kilometer-scale and quarter-degree DDM results from the perspective of the relationships between topography and precipitation in eastern China, this research emphasizes the key role played by sub-grid variations in the underlying surface in the simulation of precipitation. This could prove crucial as attempts are made to further improve the simulation performance of numerical weather models.

Research Report:Evaluating the effects of topographical factors on the precipitation simulated by kilometer-scale versus quarter-degree dynamical downscaling models in eastern China


Related Links
Institute of Atmospheric Physics, Chinese Academy of Sciences
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Physicist strikes gold, solving 50-year lightning mystery
Adelaide, Australia (SPX) Nov 25, 2022
The chances of being struck by lightning are less than one in a million, but those odds shortened considerably this month when more than 4.2 million lightning strikes were recorded in every Australian state and territory over the weekend of 12-13 November. When you consider that each lighting strike travels at more than 320,000 kilometres per hour, that's a massive amount of electricity. Ever wondered about lightning? For the past 50 years, scientists around the world have debated why lightn ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
NSF-funded solicitation seeks physical science proposals to utilize ISS National Lab

Plant on China's Shenzhou-15 spaceship begins growing

At NASA, France's Macron and US vow strong space cooperation

SpaceX resupply cargo capsule docks with International Space Station

EARTH OBSERVATION
Pulsar Fusion funded by the UK Govt to construct a nuclear based space engine

Launches secured for five Sentinel satellites

Can plasma instability in fact be the savior for magnetic nozzle plasma thrusters

Southern Launch and ATSpace return to launch up to two Kestrel I rockets before the end of the year

EARTH OBSERVATION
NASA May Have Landed on a Martian Megatsunami Deposit Nearly 50 Years Ago

Analyzing the rhythmically layered bedrock above the marker band: Sols 3669-3670

Martian dust devil analogues in the Mojave Desert #ASA183

Back to the Marker Band - Sols 3667-3668

EARTH OBSERVATION
China's six astronauts in two missions make historic gathering in space

China astronauts return from Tiangong space station

Tiangong space station open to world

China ready to implement moon landing project

EARTH OBSERVATION
SpaceX gets federal approval to launch 7,500 communication satellites

Calling all space detectives to hack an exoplanet

Spirent brings realistic testing to emerging LEO satellite applications

Slingshot Aerospace raises $40M in oversubscribed Series A2 funding round

EARTH OBSERVATION
AFRL teams with industry to expand alternative natural rubber supply

NOAA approves Maxar to provide non-earth imaging services to government and commercial customers

Milestone for laser technology

Terran Orbital assists demonstration of 1.4 Terabyte Single-Pass Optical Downlink for Pathfinder TD3 Satellite

EARTH OBSERVATION
Southern hemisphere's biggest radio telescope begins search for ET signatures

An exoplanet atmosphere as never seen before

Many planets could have atmospheres rich in helium, study finds

NASA's Webb reveals an exoplanet atmosphere as never seen before

EARTH OBSERVATION
The PI's Perspective: Extended Mission 2 Begins!

NASA's Europa Clipper gets its wheels for traveling in deep space

Mars and Jupiter moons meet

NASA studies origins of dwarf planet Haumea









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.