. | . |
Keck Observatory Achieves First Light with NIRES Spectrometer by Staff Writers Kamuela, HI (SPX) Jan 08, 2018
Astronomers at W. M. Keck Observatory have successfully met a major milestone after capturing the very first science data from Keck Observatory's newest instrument, the Caltech-built Near-Infrared Echelette Spectrometer (NIRES). The Keck Observatory-Caltech NIRES team just completed the instrument's first set of commissioning observations and achieved "first light" with a spectral image of the planetary nebula NGC 7027. "The Keck Observatory continually strives to provide instrumentation that meets the high aspirations of our scientific community and responds to changing scientific needs," said Keck Observatory Director Hilton Lewis. "NIRES is expected to be one of the most efficient single-object, near-infrared spectrographs on an eight to ten-meter telescope, designed to study explosive, deep sky phenomena such as supernovae and gamma ray bursts, a capability that is in high demand." "The power of NIRES is that it can cover a whole spectral range simultaneously with one observation," said Keith Matthews, the instrument's principal investigator and a chief instrument scientist at Caltech. "It's a cross-dispersed spectrograph that works in the infrared from where the visual cuts off out to 2.4 microns where the background from the thermal emission gets severe." Matthews developed the instrument with the help of Tom Soifer, the Harold Brown Professor of Physics, Emeritus, at Caltech and member of the Keck Observatory Board of Directors, Jason Melbourne, a former postdoctoral scholar at Caltech, and University of Toronto Department of Astronomy and Astrophysics Professor Dae-Sik Moon, who is also associated with Dunlap Institute and started working on NIRES with Matthews and Soifer when he was a Millikan postdoctoral fellow at Caltech about a decade ago. Because NIRES will be on the telescope at all times, its specialty will be capturing Targets of Opportunity (ToO) - astronomical objects that unexpectedly go 'boom.' This capability is now more important than ever, especially with the recent discovery, announced October 16, of gravitational waves caused by the collision of two neutron stars. For the first time in history, astronomers around the world detected both light and gravitational waves of this event, triggering a new era in astronomy. "NIRES will be very useful in this new field of 'multi-messenger' astronomy," said Soifer. "NIRES does not have to be taken off of the telescope, so it can respond very quickly to transient phenomena. Astronomers can easily turn NIRES to the event and literally use it within a moment's notice." With its high-sensitivity, NIRES will also allow astronomers to observe extremely faint objects found with the Spitzer and WISE infrared space telescopes. Such ancient objects, like high-redshift galaxies and quasars, can give clues about what happened just after the Big Bang. "NIRES is yet another revolutionary Keck Observatory instrument developed by Keith and Tom; they built our very first instrument, NIRC, which was so sensitive it could detect the equivalent of a single candle flame on the Moon," said Lewis. "Keith and Tom also developed its successor, NIRC2, and Keith was key to the success of MOSFIRE. They are instrumentation pioneers; we are grateful to them and their entire team for helping Keck Observatory continue to advance our technological capabilities." NIRES arrived at Keck Observatory in April. It will be available to the Keck Observatory science community in February.
Greenbelt MD (SPX) Jan 05, 2018 Twinkle, twinkle, little star, how I wonder what you are. Astronomers are hopeful that the powerful infrared capability of NASA's James Webb Space Telescope will resolve a puzzle as fundamental as stargazing itself - what IS that dim light in the sky? Brown dwarfs muddy a clear distinction between stars and planets, throwing established understanding of those bodies, and theories of their format ... read more Related Links Keck Observatory Stellar Chemistry, The Universe And All Within It
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |