![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Liza Lester for AGU News Washington DC (SPX) Mar 18, 2021
The stormy, centuries-old maelstrom of Jupiter's Great Red Spot was shaken but not destroyed by a series of anticyclones that crashed into it over the past few years. The smaller storms cause chunks of red clouds to flake off, shrinking the larger storm in the process. But the new study found that these disruptions are "superficial." They are visible to us, but they are only skin deep on the Red Spot, not affecting its full depth. The new study was published in the Journal of Geophysical Research: Planets, AGU's journal for research on the formation and evolution of the planets, moons and objects of our solar system and beyond. "The intense vorticity of the [Great Red Spot], together with its larger size and depth compared to the interacting vortices, guarantees its long lifetime," said Agustin Sanchez-Lavega, a professor of applied physics at the Basque Country University in Bilbao, Spain, and lead author of the new paper. As the larger storm absorbs these smaller storms, it "gains energy at the expense of their rotation energy." The Red Spot has been shrinking for at least the past 150 years, dropping from a length of about 40,000 kilometers (24,850 miles) in 1879 to about 15,000 kilometers (9,320 miles) today, and researchers still aren't sure about the causes of the decrease, or indeed how the spot was formed in the first place. The new findings show the small anticyclones may be helping to maintain the Great Red Spot. Timothy Dowling, a professor of physics and astronomy at the University of Louisville who is a planetary atmospheric dynamics expert not involved in the new study, said that "it's an exciting time for the Red Spot."
Stormy collisions Sanchez-Lavega and his colleagues were curious to see whether these relatively smaller storms had disturbed their big brother's spin. The iconic feature of the gas giant sits near its equator, dwarfing earthly concepts of a big bad storm for at least 150 years since its first confirmed observation, though observations in 1665 may have been from the same storm. The Great Red Spot is about twice the diameter of Earth and blows at speeds of up to 540 kilometers (335 miles) per hour along its periphery. "The [Great Red Spot] is the archetype among the vortices in planetary atmospheres," said Sanchez-Lavega, adding that the storm is one of his "favorite features in planetary atmospheres." Cyclones like hurricanes or typhoons usually spin around a center with low atmospheric pressure, rotating counter-clockwise in the northern hemisphere and clockwise in the southern, whether on Jupiter or Earth. Anticyclones spin the opposite way as cyclones, around a center with high atmospheric pressure. The Great Red Spot is itself an anticyclone, though it is six to seven times as big as the smaller anticyclones that have been colliding with it. But even these smaller storms on Jupiter are about half the size of the Earth, and about 10 times the size of the largest terrestrial hurricanes. Sanchez-Lavega and his colleagues looked at satellite images of the Great Red Spot for the past three years taken from the Hubble Space Telescope, the Juno spacecraft in orbit around Jupiter and other photos taken by a network of amateur astronomers with telescopes.
Devourer of storms "This group has done an extremely careful, very thorough job," Dowling said, adding that the flaking of red material we see is akin to a creme brulee effect, with a swirl apparent for a few kilometers on the surface that doesn't have much impact on the 200-kilometer (125-mile) depth of the Great Red Spot. The researchers still don't know what has caused the Red Spot to shrink over the decades. But these anticyclones may be maintaining the giant storm for now. "The ingestion of [anticyclones] is not necessarily destructive; it can increase the GRS rotation speed, and perhaps over a longer period, maintain it in a steady state," Sanchez-Lavega said.
![]() ![]() Juno reveals dark origins of one of Jupiter's grand light shows Pasadena CA (JPL) Mar 17, 2021 New results from the Ultraviolet Spectrograph instrument on NASA's Juno mission reveal for the first time the birth of auroral dawn storms - the early morning brightening unique to Jupiter's spectacular aurorae. These immense, transient displays of light occur at both Jovian poles and had previously been observed only by ground-based and Earth-orbiting observatories, notably NASA's Hubble Space Telescope. Results of this study were published March 16 in the journal AGU Advances. First discov ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |