. | . |
Juno Finds Changes in Jupiter's Magnetic Field by Staff Writers Pasadena CA (JPL) May 21, 2019
NASA's Juno mission to Jupiter made the first definitive detection beyond our world of an internal magnetic field that changes over time, a phenomenon called secular variation. Juno determined the gas giant's secular variation is most likely driven by the planet's deep atmospheric winds. The discovery will help scientists further understand Jupiter's interior structure - including atmospheric dynamics - as well as changes in Earth's magnetic field. A paper on the discovery was published in the journal Nature Astronomy. "Secular variation has been on the wish list of planetary scientists for decades," said Scott Bolton, Juno principal investigator from the Southwest Research Institute in San Antonio. "This discovery could only take place due to Juno's extremely accurate science instruments and the unique nature of Juno's orbit, which carries it low over the planet as it travels from pole to pole." Characterizing the magnetic field of a planet requires close-up measurements. Juno scientists compared data from NASA's past missions to Jupiter (Pioneer 10 and 11, Voyager 1 and Ulysses) to a new model of Jupiter's magnetic field (called JRM09). The new model was based on data collected during Juno's first eight science passes of Jupiter using its magnetometer, an instrument capable of generating a detailed three-dimensional map of the magnetic field. What scientists found is that from the first Jupiter magnetic field data provided by the Pioneer spacecraft through to the latest data provided by Juno, there were small but distinct changes to the field. "Finding something as minute as these changes in something so immense as Jupiter's magnetic field was a challenge," said Kimee Moore, a Juno scientist from Harvard University in Cambridge, Massachusetts. "Having a baseline of close-up observations over four decades long provided us with just enough data to confirm that Jupiter's magnetic field does indeed change over time." Once the Juno team proved secular variation did occur, they sought to explain how such a change might come about. The operation of Jupiter's atmospheric (or zonal) winds best explained the changes in its magnetic field. These winds extend from the planet's surface to over 1,860 miles (3,000 kilometers) deep, where the planet's interior begins changing from gas to highly conductive liquid metal. They are believed to shear the magnetic fields, stretching them and carrying them around the planet. Nowhere was Jupiter's secular variation as large as at the planet's Great Blue Spot, an intense patch of magnetic field near Jupiter's equator. The combination of the Great Blue Spot, with its strong localized magnetic fields, and strong zonal winds at this latitude result in the largest secular variations in the field on the Jovian world. "It is incredible that one narrow magnetic hot spot, the Great Blue Spot, could be responsible for almost all of Jupiter's secular variation, but the numbers bear it out," said Moore. "With this new understanding of magnetic fields, during future science passes we will begin to create a planetwide map of Jupiter's secular variation. It may also have applications for scientists studying Earth's magnetic field, which still contains many mysteries to be solved."
Europa Clipper High-Gain Antenna Undergoes Testing Hampton, VA (SPX) Apr 01, 2019 It probably goes without saying, but this isn't your everyday satellite dish. In fact, it's not a satellite dish at all. It's a high-gain antenna (HGA), and a future version of it will send and receive signals to and from Earth from a looping orbit around Jupiter. The antenna will take that long journey aboard NASA's Europa Clipper, a spacecraft that will conduct detailed reconnaissance of Jupiter's moon Europa to see whether the icy orb could harbor conditions suitable for life. Scien ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |