. | . |
Johns Hopkins Scientists Model Saturn's Interior by Staff Writers Baltimore MD (SPX) May 07, 2021
New Johns Hopkins University simulations offer an intriguing look into Saturn's interior, suggesting that a thick layer of helium rain influences the planet's magnetic field. The models, published this week in AGU Advances, also indicate that Saturn's interior may feature higher temperatures at the equatorial region, with lower temperatures at the high latitudes at the top of the helium rain layer. It is notoriously difficult to study the interior structures of large gaseous planets, and the findings advance the effort to map Saturn's hidden regions. "By studying how Saturn formed and how it evolved over time, we can learn a lot about the formation of other planets similar to Saturn within our own solar system, as well as beyond it," said co-author Sabine Stanley, a Johns Hopkins planetary physicist. Saturn stands out among the planets in our solar system because its magnetic field appears to be almost perfectly symmetrical around the rotation axis. Detailed measurements of the magnetic field gleaned from the last orbits of NASA's Cassini mission provide an opportunity to better understand the planet's deep interior, where the magnetic field is generated, said lead author Chi Yan, a Johns Hopkins PhD candidate. By feeding data gathered by the Cassini mission into powerful computer simulations similar to those used to study weather and climate, Yan and Stanley explored what ingredients are necessary to produce the dynamo-the electromagnetic conversion mechanism-that could account for Saturn's magnetic field. "One thing we discovered was how sensitive the model was to very specific things like temperature," said Stanley, who is also a Bloomberg Distinguished Professor at Johns Hopkins in the Department of Earth and Planetary Sciences and the Space Exploration Sector of the Applied Physics Lab. "And that means we have a really interesting probe of Saturn's deep interior as far as 20,000 kilometers down. It's a kind of X-ray vision." Strikingly, Yan and Stanley's simulations suggest that a slight degree of non-axisymmetry could actually exist near Saturn's north and south poles. "Even though the observations we have from Saturn look perfectly symmetrical, in our computer simulations we can fully interrogate the field," said Stanley. Direct observation at the poles would be necessary to confirm it, but the finding could have implications for understanding another problem that has vexed scientists for decades: how to measure the rate at which Saturn rotates, or, in other words, the length of a day on the planet. This project was conducted using computational resources at the Maryland Advanced Research Computing Center (MARCC).
Hubble Sees Changing Seasons on Saturn Greenbelt MD (SPX) Mar 19, 2021 NASA's Hubble Space Telescope is giving astronomers a view of changes in Saturn's vast and turbulent atmosphere as the planet's northern hemisphere summer transitions to fall as shown in this series of images taken in 2018, 2019, and 2020 (left to right). "These small year-to-year changes in Saturn's color bands are fascinating," said Amy Simon, planetary scientist at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "As Saturn moves towards fall in its northern hemisphere, we see the pol ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |