. 24/7 Space News .
STELLAR CHEMISTRY
Japanese-NASA X-ray Observatory stands tall as testing begins
by Francis Reddy for GSFC News
Greenbelt MD (SPX) Jul 20, 2022

XRISM is expected to launch in 2023 on a JAXA HII-A rocket from Japan's Tanegashima Space Center.

The X-ray Imaging and Spectroscopy Mission will greatly expand our knowledge of the high-energy universe and recently passed two key milestones on its path to observing the cosmos.

Nicknamed XRISM (pronounced "crism"), the mission is a collaboration between the Japan Aerospace Exploration Agency (JAXA) and NASA, with participation by ESA (the European Space Agency), to investigate the X-ray universe using high-resolution imaging and spectroscopy.

"In May, the spacecraft components - including its two instruments, named Resolve and Xtend - were mechanically and electrically integrated onto the observatory for the first time," said Project Manager Lillian Reichenthal at NASA's Goddard Space Flight Center in Greenbelt, Maryland. "This was a significant milestone in the development of the spacecraft for JAXA."

Having all of the systems installed initiates a new round of spacecraft testing to ensure everything works well together. Engineers integrate and test the equipment at different stages - first individual components, then assembled systems and instruments, and finally the full observatory. These tests subject the spacecraft and instruments to the conditions expected during launch and space operations.

In another milestone, testing and calibration of two identical, Goddard-built X-ray Mirror Assemblies (XMAs) was completed, and the mirrors were shipped to Japan in late May and early June. The XMAs underwent separate environmental testing and will receive their final optical alignment before being installed on each instrument in the fall.

The Resolve instrument will precisely measure low-energy X-rays to extract information about the physical state and motion of ionized gases associated with supernova remnants, galaxy clusters, and outflows streaming from supermassive black holes in active galaxies. The Xtend instrument, detecting X-rays of similar energy, will produce images with a field of view about 150 times larger than Resolve, extending XRISM's cosmic grasp.

"The science from XRISM will be extraordinary," said Goddard's Brian Williams, the NASA project scientist for the mission. "The Resolve instrument promises to open a new window on the high-energy universe." Resolve's detector system was also developed at Goddard.

XRISM is expected to launch in 2023 on a JAXA HII-A rocket from Japan's Tanegashima Space Center.


Related Links
XRISM
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
NASA awards launch contract for Roman Space Telescope
Washington DC (SPX) Jul 20, 2022
NASA has awarded a NASA Launch Services (NLS) II contract to Space Exploration Technologies Corporation (SpaceX) in Hawthorne, California, to provide launch service for the Nancy Grace Roman Space Telescope mission. The Roman Space Telescope is the top-priority large space mission recommended by the 2010 Astronomy and Astrophysics Decadal Survey. NLS II is an indefinite-delivery/indefinite-quantity contract. The total cost for NASA to launch the Roman telescope is approximately $255 million, which ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Dragon docks at ISS to deliver various science payloads

US renews space flights with Russia in rare cooperation

NASA Highlights Climate Research on Cargo Launch, Sets Coverage

Short space trips for paying passengers on the way

STELLAR CHEMISTRY
Australian rocketry team regains sky wings with triple win at Spaceport America Cup

Dawn Aerospace awarded EU contract for hydrazine-replacement program

SpaceX launches 53 Starlink satellites to orbit after Dragon docks with ISS

NASA, Northrop Grumman to test fire future Artemis booster motor

STELLAR CHEMISTRY
A Rover-Sized Boulder Sols 3532-3533

Futuristic Space Habitat lands at Institut Auf Dem Rosenberg

Unequal siblings: Ius and Tithonium Chasma

When Mars throws you a curveball Sol 3539-3540

STELLAR CHEMISTRY
Third Tianlian II-series satellite launched

China's newest research lab prepares launch to space

China prepares to launch Wentian lab module

Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

STELLAR CHEMISTRY
Ukrainian Space Startups

NASA and Houston's Ion Partner to Create Opportunities for Startup Community

Tech firms unveil plan for 'space-based' 5G network

ESA astronaut selection in the final stages

STELLAR CHEMISTRY
Swarm dodges collision during climb to escape Sun's wrath

NASA seeks public's designs to throw shade in space

Laser Terminal Bound for ISS arrives at Goddard for testing

A programming language for hardware accelerators

STELLAR CHEMISTRY
A New Method to Detect Exoplanets

Rocking shadows in protoplanetary discs

To search for alien life, astronomers will look for clues in the atmospheres of distant planets

Webb begins hunt for the first stars and habitable worlds

STELLAR CHEMISTRY
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.