. 24/7 Space News .
ENERGY TECH
It's in the air - battery discovery takes up the charge
by Staff Writers
Sydney, Australia (SPX) Feb 11, 2022

The capacity of next-generation lithium-oxygen batteries to extend the driving range between charges would be a leap forward for the electric vehicle industry.

Motorists going slow on the uptake of electric vehicles cite anxiety about the distance they can travel between charges as a key concern.

Clean energy researchers at the University of Technology Sydney (UTS) have designed a molecule to boost the performance of lithium-oxygen batteries to give electric vehicles the same driving range as petrol-fuelled cars.

Lithium-oxygen batteries employ cutting-edge technology aimed to deliver maximum energy density through breathing air to generate electricity.

To date, however, they have been beset by challenges, including low discharge capacity, poor energy efficiency and severe parasitic reactions. This new all-in-one molecule can simultaneously tackle those issues.

UTS Professor Guoxiu Wang, who led the research team in the UTS Centre for Clean Energy Technology, said the exciting discovery resolved several existing obstacles and created the possibility of developing a long-life, energy-dense lithium-oxygen battery that was highly efficient.

"Batteries are changing fundamentally," Professor Wang said. "They will facilitate the transition towards a climate-neutral society and open up new industry opportunities for a country like Australia that is rich in the fundamental elements for building batteries.

"They will also help utilities improve power quality and reliability and help governments around the world achieve net zero carbon emissions."

Professor Wang said his team's study details an Li-O2 battery operated via a new quenching/mediating mechanism that relies on the direct chemical reactions between a versatile molecule and superoxide radical/Li2O2. The battery exhibits a 46-fold increase in discharge capacity, a low charge overpotential of 0.7 V, and an ultralong cycle life greater than 1400 cycles.

"Our rationally designed PDI-TEMPO molecule opens a new avenue for developing high-performance Li-O2 batteries," Professor Wang said.

"The capacity of next-generation lithium-oxygen batteries to extend the driving range between charges would be a significant leap forward for the electric vehicle industry.

"We are confident our all-in-one molecule can dramatically improve the performances of lithium-oxygen batteries and enable new generation lithium-oxygen batteries to be practical."

Research Report: "A long-life lithium-oxygen battery via a molecular quenching/mediating mechanism"


Related Links
University of Technology Sydney
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Light could boost performance of fuel cells, lithium batteries, and other devices
Boston MA (SPX) Feb 10, 2022
Engineers from MIT and Kyushu University in Japan have demonstrated for the first time how light can be used to significantly improve the performance of fuel cells, lithium batteries, and other devices that are based on the movement of charged atoms, or ions. Charge can be carried through a material in different ways. We are most familiar with the charge that is carried by the electrons that help make up an atom. Light has long been used to excite electrons to make them more conductive. Common app ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
Global patent filings surged to record high in 2021: UN

China joins industrial design IP treaty

Northrop Grumman's 17th Resupply Mission packed with science and technology for ISS

Astronaut hits 300 days in space, on way to break NASA record

ENERGY TECH
ESA's Vega rocket marks ten years with countdown to more powerful successor

Rocket Lab brings forward launch for earth imaging company Synspective

ESA selects payloads for Ariane 6 first flight

Musk 'confident' of Starship orbital launch this year

ENERGY TECH
Sols 3383-3384: Picking Our Way to the Pediment

The devil's in the detail

How easy is it to turn water into oxygen on Mars

Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars

ENERGY TECH
China welcomes cooperation on space endeavors

China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

ENERGY TECH
Russian Soyuz rocket launches 34 new UK satellites

Protecting dark and quiet skies from satellite constellation interference

Solar storm knocks out 40 SpaceX Starlink satellites

Sidus Space announces deal with Red Canyon Software to support LizzieSat Constellation

ENERGY TECH
Facebook co-workers now 'Metamates' as image evolves

New Space Station experiments study flames in space

A new way to shape a material's atomic structure with ultrafast laser light

Extremely rare observation of 'tennis-like' vibrations of lead

ENERGY TECH
New chemical pathway allows for Peptides to form on cosmic dust grains

Planetary bodies observed in habitable zone of dead star

A targeted, reliable, long-lasting kill switch for genetically engineered microbe

Giant sponge gardens discovered on seamounts in the Arctic deep sea

ENERGY TECH
NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter

Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.