. 24/7 Space News .
STELLAR CHEMISTRY
Iron-60 discovery in Antarctic provides data on solar system environment
by Staff Writers
Munich, Germany (SPX) Aug 21, 2019

The Kohnen Station is a container settlement in the Antarctic, from whose vicinity the snow samples in which iron-60 was found originate.

The quantity of cosmic dust that trickles down to Earth each year ranges between several thousand and ten thousand tons. Most of the tiny particles come from asteroids or comets within our solar system.

However, a small percentage comes from distant stars. There are no natural terrestrial sources for the iron-60 isotope contained therein; it originates exclusively as a result of supernova explosions or through the reactions of cosmic radiation with cosmic dust.

The first evidence of the occurrence of iron-60 on Earth was discovered in deep-sea deposits by a TUM research team 20 years ago. Among the scientists on the team was Dr. Gunther Korschinek, who hypothesized that traces of stellar explosions could also be found in the pure, untouched Antarctic snow.

Antarctic Snow Travels around the World
In order to verify this assumption, Dr. Sepp Kipfstuhl from the Alfred Wegener Institute collected 500 kg of snow at the Kohnen Station, a container settlement in the Antarctic, and had it transported to Munich for analysis.

There, a TUM team melted the snow and separated the meltwater from the solid components, which were processed at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) using various chemical methods, so that the iron needed for the subsequent analysis was present in the milligram range, and the samples could be returned to Munich.

Korschinek and Dominik Koll from the research area Nuclear, Particle and Astrophysics at TUM found five iron-60 atoms in the samples using the accelerator laboratory in Garching near Munich.

"Our analyses allowed us to rule out cosmic radiation, nuclear weapons tests or reactor accidents as sources of the iron-60," states Koll. "As there are no natural sources for this radioactive isotope on Earth, we knew that the iron-60 must have come from a supernova."

Stardust Comes from the Interstellar Neighborhood
The research team was able to make a relatively precise determination as to when the iron-60 has been deposited on Earth: The snow layer that was analyzed was not older than 20 years.

Moreover, the iron isotope that was discovered did not seem to come from particularly distant stellar explosions, as the iron-60 dust would have dissipated too much throughout the universe if this had been the case.

Based on the half-life of iron-60, any atoms originating from the formation of the Earth would have completely decayed by now. Koll therefore assumes that the iron-60 in the Antarctic snow originates from the interstellar neighborhood, for example from an accumulation of gas clouds in which our solar system is currently located.

"Our solar system entered one of these clouds approximately 40,000 years ago," says Korschinek, "and will exit it in a few thousand years. If the gas cloud hypothesis is correct, then material from ice cores older than 40,000 years would not contain interstellar iron-60," adds Koll.

"This would enable us to verify the transition of the solar system into the gas cloud - that would be a groundbreaking discovery for researchers working on the environment of the solar system.

Research paper


Related Links
Technical University of Munich (TUM)
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Finding a cosmic fog within shattered intergalactic pancakes
New Haven CT (SPX) Aug 14, 2019
To understand the most ordinary matter in the universe - and the extraordinary things that happen to it - a Yale-led team of astronomers took a deep dive into the cosmic fog. They learned intriguing new details about the dynamics of baryons, the collection of subatomic particles (including protons and neutrons) that accounts for much of the visible matter in the universe. Most baryons reside in the intergalactic medium (IGM), which is the space in-between galaxies where matter is neither bound to nor tu ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Japan steps in to supply key component to Russia's space program

Solar sail craft could revolutionize space travel

A space cocktail of science, bubbles and sounds

Virgin Galactic unveils new Mission Control for space tourism

STELLAR CHEMISTRY
Secret Russia weapon project: gamechanger or PR stunt?

China launches 3 satellites wth Jielong-1 rocket

Bolton says Russia 'stole' US hypersonic technology

US detect explosion of old European Ariane 4 rocket in space

STELLAR CHEMISTRY
Robotic toolkit added to NASA's Mars 2020 Rover

Ancient Mars was warm with occasional rain, turning cold

Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

NASA descends on Icelandic lava field to prepare for Mars

STELLAR CHEMISTRY
China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

From Moon to Mars, Chinese space engineers rise to new challenges

STELLAR CHEMISTRY
ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

Embry-Riddle plans expansion of its Research Park through partnership with Space Square

OneWeb secures global spectrum further enabling global connectivity services

Companies partner to offer a complete solution for space missions as a service

STELLAR CHEMISTRY
Radiation up to '16 times' the norm near Russia blast site

Data rate increase on the International Space Station supports future exploration

Air Force certifies first field unit for 3D printing of aircraft parts

NASA awards Physical Optics Corporation additional $4M contract for Zero Gravity Optical Fibers

STELLAR CHEMISTRY
New "Gold Open Access" Planetary Science Journal Launched

A second planet in the Beta Pictoris System

A rare look at the surface of a rocky exoplanet

How Many Earth-like Planets Are Around Sun-like Stars

STELLAR CHEMISTRY
Mission to Jupiter's icy moon confirmed

Young Jupiter was smacked head-on by massive newborn planet

Giant Impact Disrupted Jupiter's Core

Young Jupiter Was Smacked Head-On by Massive Newborn Planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.