. | . |
Intensified global monsoon extreme rainfall signals global warming by Staff Writers Beijing, China (SPX) Nov 03, 2019
Global warming has already led to significant increases in extreme rainfall over the global land monsoon regions over the past century, according to a study recently published in Journal of Climate. The research, providing a global perspective of the monsoon regions which sprawl north and south from the Earth's equator, reveals significant associations between global warming and the observed intensification of extreme rainfall over the global monsoon region and its several subregions, including the southern part of South Africa, India, North America and the eastern part of the South America. "Extreme rainfall over the global monsoon regions deserves specific attention as it is more intense than that on the rest of the land and affects nearly two-thirds of the world's population," said Prof. ZHOU Tianjun, the corresponding author on the paper. Zhou is a senior scientist at the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics at the Institute of Atmospheric Physics and CAS Center for Excellence in Tibetan Plateau Earth Sciences in the Chinese Academy of Sciences. He is also a professor at the University of Chinese Academy of Sciences. To maximize the data coverage for analysis, scientists combined several sets of long-running, high-quality global and regional extreme precipitation observations currently available. Employing rigorous statistical tests, they demonstrated that the significant influence of global warming on regional extreme rainfall changes is robust regardless of different time periods of analysis, criteria of selecting stations and datasets used. While identifying an overall increase pattern in extreme rainfall over global monsoon regions as a whole, scientists also noted distinct regional characteristics. "This is because apart from global warming, extreme rainfall is also affected by regional processes such as aerosols, urbanization, and climate natural variability (i.e., the variability intrinsic to climate system)," said Prof. Zhou. "These effects are important especially at regional scales, such as for the East Asian and Australian monsoon regions." The researchers will continue to study how different physical processes have affected extreme rainfall in the observations. "There are several challenges in the understanding of extreme rainfall changes, including the limited spatial and temporal coverages of the observations. Further improvement in monitoring and data sharing within the climate research community is required," Zhou said. "Our result laid a basis for further understanding of human influence on extreme rainfall changes in the monsoon regions."
Tiny particles lead to brighter clouds in the tropics Boulder CO (SPX) Oct 17, 2019 When clouds loft tropical air masses higher in the atmosphere, that air can carry up gases that form into tiny particles, starting a process that may end up brightening lower-level clouds, according to a CIRES-led study published in Nature. Clouds alter Earth's radiative balance, and ultimately climate, depending on how bright they are. And the new paper describes a process that may occur over 40 percent of the Earth's surface, which may mean today's climate models underestimate the cooling impact ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |