. | . |
Intense storms batter Saturn's largest moon, UCLA scientists report by Staff Writers Los Angeles CA (SPX) Oct 16, 2017
Titan, the largest of Saturn's more than 60 moons, has surprisingly intense rainstorms, according to research by a team of UCLA planetary scientists and geologists. Although the storms are relatively rare - they occur less than once per Titan year, which is 29 and a half Earth years - they occur much more frequently than the scientists expected. "I would have thought these would be once-a-millennium events, if even that," said Jonathan Mitchell, UCLA associate professor of planetary science and a senior author of the research, which was published Oct. 9 in the journal Nature Geoscience. "So this is quite a surprise." The storms create massive floods in terrain that are otherwise deserts. Titan's surface is strikingly similar to Earth's, with flowing rivers that spill into great lakes and seas, and the moon has storm clouds that bring seasonal, monsoon-like downpours, Mitchell said. But Titan's precipitation is liquid methane, not water. "The most intense methane storms in our climate model dump at least a foot of rain a day, which comes close to what we saw in Houston from Hurricane Harvey this summer," said Mitchell, the principal investigator of UCLA's Titan climate modeling research group. Sean Faulk, a UCLA graduate student and the study's lead author said the study also found that the extreme methane rainstorms may imprint the moon's icy surface in much the same way that extreme rainstorms shape Earth's rocky surface. On Earth, intense storms can trigger large flows of sediment that spread into low lands and form cone-shaped features called alluvial fans. In the new study, the UCLA scientists found that regional patterns of extreme rainfall on Titan are correlated with recent detections of alluvial fans, suggesting that they were formed by intense rainstorms. The finding demonstrates the role of extreme precipitation in shaping Titan's surface, said Seulgi Moon, UCLA assistant professor of geomorphology and a co-senior author of the paper. Moon said the principle likely applies to Mars, which has large alluvial fans of its own, and to other planetary bodies. Greater understanding of the relationship between precipitation and the planetary surfaces could lead to new insights about the impact of climate change on Earth and other planets. Titan's alluvial fans were detected by a radar instrument on the Cassini spacecraft, which began orbiting Saturn in late 2004. The Cassini mission ended in September 2017, when NASA programmed it to plunge into the planet's atmosphere as a way to safely destroy the spacecraft. Juan Lora, a UCLA postdoctoral scholar and a co-author of the paper, said Cassini has revolutionized scientists' understanding of Titan. Although Titan's alluvial fans are a new discovery, scientists have had eyes on the moon's surface for years. Shortly after Cassini reached Saturn, radar and other instruments showed that vast sand dunes dominated Titan's lower latitudes, while lakes and seas dominated its higher latitudes. The UCLA scientists found that the alluvial fans are mostly located between 50 and 80 degrees latitude - close to the centers of the moon's northern and southern hemispheres, but generally slightly closer to the poles than to the equator. Such variations in surface features suggest the moon has corresponding regional variations in precipitation, because rainfall and subsequent runoff play a key role in eroding land and filling lakes, while the absence of rainfall promotes the formation of dunes. Previous models have shown that liquid methane generally concentrates on Titan's surface at higher latitudes. But no previous study had investigated the behavior of extreme rainfall events that might be capable of triggering major sediment transport and erosion, or shown their connection to surface observations. The scientists primarily used computer simulations to study Titan's hydrologic cycle because observations of actual precipitation on Titan are difficult to obtain and because, given the length of each year on Titan, Cassini only observed the moon for three seasons. They found that while rain mostly accumulates near the poles, where Titan's major lakes and seas are located, the most intense rainstorms occur near 60 degrees latitude - precisely the region where alluvial fans are most heavily concentrated. The study suggests that the intense storms develop due to the sharp differences between the wetter, cooler weather in the higher latitudes and the drier, warmer conditions in the lower latitudes. Similar temperature contrasts on Earth produce intense cyclones in the mid-latitudes, which is what creates the storms and blizzards that are common during the winter months across much of North America.
Tampa FL (SPX) Sep 15, 2017 After 20 years in space, NASA's famed Cassini spacecraft made its final death plunge into Saturn on Friday, ending a storied mission that scientists say taught us nearly everything we know about Saturn today and transformed the way we think about life elsewhere in the solar system. Cassini, an international project that cost $3.9 billion and included scientists from 27 nations, disintegrat ... read more Related Links UCLA Explore The Ring World of Saturn and her moons Jupiter and its Moons The million outer planets of a star called Sol News Flash at Mercury
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |