. 24/7 Space News .
STELLAR CHEMISTRY
Increasing temperatures in cooling systems
by Staff Writers
Nuremberg, Germany (SPX) Mar 26, 2018

'The particles grow and their properties change due to this aggregation. At the same time, they decrease in number in the system and thus the number of degrees of freedom for particle movement also decreases', explains Dr. Thorsen Poschel. 'Our hypothesis was that the granular temperature can increase temporarily because of this, even though mechanical energy is lost with every collision.' (file image)

For the very first time, scientists from Friedrich-Alexander-Universitat Erlangen-Nurnberg (FAU), the University of Leicester and the University of Vigo have proven that the kinetic energy from particles in granular gases such as dust clouds can rise temporarily even though energy is constantly being drawn out of the system.

Their research adds further detail to Haff's law (devised 35 years ago), which states that the granular temperature in closed systems continually decreases. The results were gained using new simulation processes and have now been published in the renowned journal Nature Communications (doi: 10.1038/s41467-017-02803-7).

Granular gases are systems that contain macroscopic particles in low density. Examples include cosmic dust, the rings around the planets Saturn, Uranus and Neptune and also clouds of dust on Earth. They can essentially be described like molecular gases such as helium, but with one important difference - granular particles do not collide elastically.

'In isolated granular gases without external energy input, the kinetic energy of the particles constantly decreases due to the collisions, which is why the granular temperature also decreases', explains Prof. Dr. Thorsten Poschel from the Chair for Multiscale Simulation of Particulate Systems at FAU. 'This cooling law, also known as Haff's law, has been known since 1983 and it is one of the key findings of the kinetics of granular gases'.

Adhesion changes properties
However, Haff's law of granular cooling does not consider one aspect. Various forces such as surface adhesion or electrostatic charge cause the particles to adhere to each other in systems with extremely small particles measuring only a few micrometres.

'The particles grow and their properties change due to this aggregation. At the same time, they decrease in number in the system and thus the number of degrees of freedom for particle movement also decreases', explains Dr. Thorsen Poschel. 'Our hypothesis was that the granular temperature can increase temporarily because of this, even though mechanical energy is lost with every collision.'

New simulation methods look at old law in more detail
Poschel and his colleagues physicist Nikolai V. Brilliantov from the University of Leicester (UK) and computer scientist Arno Formella from the University of Vigo (Spain) were able to prove the existence of this counterintuitive effect in complex simulations. To do so, the researchers used and developed established methods such as analytical mathematics for the kinetics of gas properties and the Monte Carlo method - a stochastic method based on the theory of probability.

Poschel explains: 'By using a new system of kinetic equations and the relevant scaling methods, we were able to depict the dynamics of particle aggregations in granular gases reliably for the first time. We have not revised Haff's law by any means, but we were able to demonstrate an important effect that had been disregarded up to now.'

The scientists' findings could help to increase the understanding of the basic properties of granular gases such as soot agglomeration in flue gases on Earth or in astrophysical phenomena such as cosmic dust in planetary rings in space. The findings have now been published in the renowned journal Nature Communications under the title 'Increasing temperature of cooling granular gases'.

Research paper


Related Links
University of Erlangen-Nuremberg
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Hubble solves cosmic 'whodunit' with interstellar forensics
Greenbelt MD (SPX) Mar 23, 2018
On the outskirts of our galaxy, a cosmic tug-of-war is unfolding-and only NASA's Hubble Space Telescope can see who's winning. The players are two dwarf galaxies, the Large Magellanic Cloud and the Small Magellanic Cloud, both of which orbit our own Milky Way Galaxy. But as they go around the Milky Way, they are also orbiting each other. Each one tugs at the other, and one of them has pulled out a huge cloud of gas from its companion. Called the Leading Arm, this arching collection of gas co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
China to become top patent filer within three years: UN

Airbus delivers new life support system for the ISS

Inspired by ASU NASA mission, students create space art

Rooting for Answers: Simulating G-Force to Test Plant Gravity Perception in Mustard Seedlings

STELLAR CHEMISTRY
3D printing rocket engines in SPAIN

Soyuz rocket rolled out for launch

SpaceX launches innovative secondary payload dispenser along side Hispasat

Air Force Chief of Staff: US 'On Track' to Replace Russian RD-180 Rocket Engine

STELLAR CHEMISTRY
Opportunity Mars Rover brushes a new rock target

Mars' oceans formed early, possibly aided by massive volcanic eruptions

Martian oceans formed earlier but weren't as deep as previously thought, study finds

Sol 2000: Roving for 2000 Martian Days

STELLAR CHEMISTRY
Chang'e-4 Lunar Probe will Reach the Far Side of the Moon

China to launch Long March-5B rocket next year

China plans to develop a multipurpose, reusable space plane

China moving ahead with plans for next-generation X-ray observatory

STELLAR CHEMISTRY
Ground-breaking satellite projects will transform society

Isotropic Systems to offer OneWeb compatible ultra low-cost terminals

New laws unlock exciting space era for UK

Iridium Certus Distribution Expands; Enables Globally 'Connected Vehicles', Assets and Teams

STELLAR CHEMISTRY
Diamond powers first continuous room-temperature solid-state maser

Raytheon contracted for Cobra Dane radar support

New 'AR' Mobile App Features 3-D NASA Spacecraft

Predicting the Lifespan of Materials in Space

STELLAR CHEMISTRY
UK team to lead European mission to study new planets

TRAPPIST-1 planets provide clues to the nature of habitable worlds

ESA's next science mission to focus on nature of exoplanets

'Oumuamua likely came from a binary star system

STELLAR CHEMISTRY
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.