. 24/7 Space News .
WATER WORLD
Increase in marine heat waves threatens coastal habitats
by Staff Writers
Gloucester Point VA (SPX) Jan 19, 2022

Cumulative heat wave intensity by year in the Chesapeake Bay between 1986-2020, as averaged among the selected temperature-monitoring stations. The dotted line shows the increasing trend.

Heat waves-like the one that blistered the Pacific Northwest last June-also occur underwater. A new study in Frontiers in Marine Science paints a worrisome picture of recent and projected trends in marine heat waves within the nation's largest estuary, with dire implications for the marine life and coastal economy of the Chesapeake Bay and other similarly impacted shallow-water ecosystems.

The study's authors, Drs. Piero Mazzini and Cassia Pianca of William and Mary's Virginia Institute of Marine Science, note they saw "significant upward trends in the frequency and yearly cumulative intensity of marine heat waves within the Chesapeake Bay."

The pair based their analysis on long-term measurements of water temperature from 6 sites along the Bay's 200-mile length, with record length varying between 26 and 35 years. Like other researchers, they defined a marine heat wave as any period of 5 or more consecutive days with water temperatures warmer than 90% of those measured on the same date and in the same spot as in years past. They analyzed the record of Bay heat waves in terms of frequency, intensity, duration, and cumulative temperature stress.

Based on those criteria, Mazzini and Pianca determined that the Chesapeake Bay experienced an average of two 11-day marine heat waves per year between 1986 and 2020, with an average intensity of 5.4F (3C) and a maximum peak of 14.4F (8C) above the climatic norm. This translates to an average yearly cumulative intensity of 130F (72C) days, a measure of heat stress for marine systems similar to the "cooling degree days" used to determine the energy required to keep indoor spaces comfortable for people.

The researcher's most troubling finding was that the maximum frequency of marine heat waves occurred during the last 10 years, reaching 6-8 events per year compared to only 4-5 events per year prior to 2010. That equals a gain of 1.4 annual heat waves each decade, with a corresponding increase in annual cumulative intensity. The researchers also found that years without marine heat waves were fairly common in Bay waters prior to 2010, but have occurred baywide only once since, in 2014.

"If these trends persist," says Mazzini, "the Bay will experience heat waves on a monthly basis within the next 50 years, and by the end of the century will reach a semi-permanent heat-wave state, with extreme temperatures present for more than half the year."

The authors warn this would have devastating impacts on the Bay ecosystem, aggravating the effects of nutrient pollution, increasing the severity of low-oxygen "dead-zones," stimulating algal blooms, stressing or killing bottom-dwelling communities, causing shifts in species composition, and leading to declines in important commercial fishery species such as striped bass. Similar trends and impacts are likely in other shallow-water coastal systems worldwide given continued global warming.

Although there have been several previous studies of overall warming trends in estuaries (including the Chesapeake Bay), Mazzini and Pianca's research is the first study of marine heat waves in this type of shallow coastal ecosystem. Their findings not only enhance our basic understanding of these events but can be used to better predict future occurrences and guide management decisions.

Says Pianca, "Future management decisions should focus not only on the effect of long-term temperature changes, but also consider these short, acute events, which could have severe impacts long after they end."

Causes of Bay heat waves
In addition to studying the characteristics of Bay heat waves and how they might be changing through time, Mazzini and Pianca set out to examine the causes of these extreme events by analyzing three potential and interacting triggers: heating by the atmosphere, input of warm river water, and incursions of balmy seawater.

The researchers approached this puzzle by comparing the timing of marine heat waves both inside and outside the Bay, hypothesizing that heat-wave events with similar start and end dates are likely to share the same cause. For water temperatures outside the Bay, they analyzed data from two ocean observation buoys, one just seaward of the Bay mouth-within a current system known as the Bay plume-and another farther north on the continental shelf.

Their results show that marine heat waves tend to occur at roughly the same time both along the entire length of the Bay and within nearby coastal waters. They also found a clear correlation between the increased frequency of marine heat waves and the long-term warming of Bay and coastal waters observed in other studies. What they did not find was a pattern of heat waves starting in the Bay and propagating into the ocean, or starting in the ocean and propagating into the Bay.

Mazzini says these findings "demonstrate a strong connection among these different environments" and point to "coherent large-scale forcing" as the main driver of marine heat waves in the Bay region. Drawing on another recent VIMS study, this one of long-term Bay warming, Mazzini says "the most likely candidate to drive the largely coherent marine heat waves in the Bay and plume-ocean region is the transfer of heat from the atmosphere to the water surface."

A better understanding of the causes of Bay heat waves will improve projections of future conditions and help managers better assess water-quality goals, particularly as they relate to efforts to limit low-oxygen "dead zones," which can stress mobile animals such as striped bass, and kill attached or slow-moving invertebrates outright.

"The future increase in marine heat waves as suggested in our study could aggravate hypoxia in the Bay by further stratifying the water column, increasing the oxygen needed by marine life, and decreasing oxygen solubility." These changes, warns Mazzini, "could push the Chesapeake Bay ecosystem past a dangerous tipping point."

Concerns regarding the impact of warming on Bay health and restoration goals were emphasized earlier this year when the Chesapeake Bay Executive Council signed a new directive for collective action to address the threats of climate change in all aspects of the partnership's work.

Research Report: "Marine Heat Waves in the Chesapeake Bay"


Related Links
Virginia Institute of Marine Science
Water News - Science, Technology and Politics


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


WATER WORLD
Why did ocean productivity decline abruptly 4.6 million years ago?
Uppsala, Sweden (SPX) Jan 19, 2022
By drilling deep down into sediments on the ocean floor researchers can travel back in time. A research team led from Uppsala University now presents new clues as to when and why a period often referred to as the 'biogenic bloom' came to an abrupt end. Changes in the shape of the Earth's orbit around the Sun may have played a part in the dramatic change. Healthy ocean systems contain healthy primary producers, such as the single-celled algae diatoms and coccolithophores, which sustain all other li ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Crash test dummy

Cosmonauts complete first spacewalk of 2022 to prepare Russian ISS segment

Data-relay system connects astronauts direct to Europe

NASA's newest astronaut class begins training in Houston

WATER WORLD
Gilmour Space fires up for 2022 with Australia's largest rocket engine test

Iran tests solid-fuel satellite carrier rocket

Virgin Orbit mission success brings UK satellite launch one step closer

Virgin Orbit air drops rocket carrying 7 satellites

WATER WORLD
Grounded: First Flight Delay Due to Inclement Weather on Another World

Sols 3357-3360: Edging Closer and Closer to Panari

Curiosity measures intriguing carbon signature on Mars

Steady driving towards ExoMars launch

WATER WORLD
China conducts its first rocket launch of 2022

Shouzhou XIII crew finishes cargo spacecraft, space station docking test

China to complete building of space station in 2022

CASC plans more than 40 space launches for China in 2022

WATER WORLD
Palomar survey instrument analyzes impact of Starlink satellites

Update on Africa's 1st Satellite constellation built by CPUT

Loft Orbital signs with Airbus to procure 15 Arrow satellite platforms

Kleos' Patrol Mission satellites to launch in April

WATER WORLD
Rusting iron can be its own worst enemy

Using ice to boil water

A method to create upward water fountain in 'deep water'

Controlling how "odd couple" surfaces and liquids interact

WATER WORLD
Ironing out the interiors of exoplanets

Evidence for a second supermoon beyond our solar system

Unusual team finds gigantic planet hidden in plain sight

Pandora mission to study stars and exoplanets continues toward flight

WATER WORLD
Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons

Testing radar to peer into Jupiter's moons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.