. | . |
Incoming! Debris enroute to the Moon by Staff Writers Paris (ESA) Feb 03, 2022
The Moon is set to gain one more crater. A leftover SpaceX Falcon 9 upper stage will impact the lunar surface in early March, marking the first time that a human-made debris item unintentionally reaches our natural satellite. In 2015 the Falcon 9 placed NOAA's DSCOVR climate observatory around the L1 Lagrange point, one of five such gravitationally-stable points between Earth and the Sun. Having reached L1, around 1.5 million km from Earth, the mission's upper stage ended up pointed away from Earth into interplanetary space. This rendered a deorbit burn to dispose of it in our planet's atmosphere impractical, while the upper stage also lacked sufficient velocity to escape the Earth-Moon system. Instead it was left in a chaotic Sun-orbiting orbit near the two bodies. Now credible public estimates forecast its impact with the Moon on 4 March at 12:25:39 UTC at a point on the lunar far side near the equator. Follow-up observations should sharpen the accuracy of the forecast, but the approximately 3 ton, 15 m long by 3 m wide upper stage is currently projected to hit at a speed about 2.58 km/s.
Scientifically vital points in space Europe's Ariane 5 delivered the James Webb Space Telescope to L2, the second Sun-Earth Lagrange point - 'behind' instead of in 'front of' our planet - but after separating from Webb the upper stage used all its remaining fuel to escape the Earth-Moon system entirely, putting it into a stable heliocentric orbit.
A brief history of human-made Moon impacts In 2009 NASA crashed its LCROSS mission into the Moon, revealing water in the resulting debris plume, with the LADEE spacecraft doing the same on the lunar farside in 2013. ESA's Smart-1 spacecraft was crashed into the Moon in 2006, the subject of a worldwide observing campaign. "This forthcoming Falcon 9 impact is a little beyond our usual area of interest, because we are mainly focused on the debris population in highly-trafficked low-Earth orbits, up to 2000 km altitude, as well as geosynchronous orbits around 35 000 km away," explains Tim Flohrer of ESA's Space Debris Office. "Our colleagues in the ESA Planetary Defence Office peer further into space, however. They use telescopes around the globe to track Near-Earth asteroids, and sometimes observe human-made objects as well. Extending our own remit into the 'cislunar' space between Earth and the Moon has been discussed, due to the increasing use of the scientifically vital Sun-Earth Lagrange points in coming years." Detlef Koschny, heading ESA's Planetary Defence Office, adds: "We use telescopic observations to pinpoint the orbits, mainly of natural objects in the space surrounding Earth. Occasionally, we also pick up man-made objects far away from the Earth, such as lunar exploration spacecraft remnants, and objects returning from Lagrange points." For international spacefarers, no clear guidelines exist at the moment to regulate the disposal at end of life for spacecraft or spent upper stages sent to Lagrange points. Potentially crashing into the Moon or returning and burning up in Earth's atmosphere have so far been the most straightforward default options. "The upcoming Falcon 9 lunar impact illustrates well the need for a comprehensive regulatory regime in space, not only for the economically crucial orbits around Earth but also applying to the Moon," says Holger Krag, Head of ESA's Space Safety Programme. "It would take international consensus to establish effective regulations, but Europe can certainly lead the way." All the launchers developed by ESA during the last decade - Vega, Ariane 6 and Vega C - incorporate a built-in reignition capability, which ensures the safe return to Earth for atmospheric burn-up of their upper stages.
Assessing lunar impact risk ESA's Space Safety programme is interested in this research as a way of assessing the number of incoming objects ranging in size from tens of centimetres to metres across. This is useful because the precise number of objects in this range is not known very well. This research might also be valuable for future lunar colonists. One of the dangers they might face is small meteoroids doing damage to their infrastructure - NELIOTA results are helping to quantify the danger. Without an atmosphere to burn up such bodies, it is likely that future permanent lunar structures will be underground, to provide shielding against impacts as well as space radiation.
Turion Space and NanoAvionics to build a satellite for orbital reconnaissance mission Columbia IL (SPX) Feb 03, 2022 US company Turion Space, aiming to build spacecraft to remove orbital-debris, satellite servicing, and domain awareness, has selected NanoAvionics small satellite bus, the MP42, as the basis for its 'Droid-1' spacecraft designed for a reconnaissance mission in low Earth orbit (LEO). The launch of the Droid-1 satellite is planned for the first quarter of 2023. Using its onboard sensors, Turion Space's satellite will be able to take extremely accurate measurements of spacecraft and objects in orbit. ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |