. 24/7 Space News .
STELLAR CHEMISTRY
In a First, Scientists Map Particle-Laden Rivers in the Sky
by Staff Writers
Pasadena CA (JPL) May 04, 2021

An atmospheric river carrying dust particles blows across the North Atlantic Ocean from Africa to the Caribbean in July 2018. Credit: Suomi/NPP satellite images from NASA Worldview website. Animation by climate.gov

Last summer, "Godzilla" came for the Caribbean and the U.S. Gulf Coast. This particular monster wasn't of the sci-fi variety, but a massive dust storm kicked up by winds from the Sahara Desert and carried an ocean away. The dust storm was an extreme example of a phenomenon that happens regularly: the global transport of dust, soot, and other airborne particles collectively known as aerosols by jets of winds in the atmosphere, forming what are called aerosol atmospheric rivers.

Gaining a better understanding of how these particles are transported around the globe is important because certain aerosols can nourish rainforest soil, help or hinder cloud formation, affect air quality - which can impact human health - or reduce visibility. But studies of aerosol transport have tended to focus on single events in a particular part of the world. There wasn't really a way of looking at them in a holistic, global way until now.

In a first, a recent study published in the journal Geophysical Research Letters does just that. Five types of aerosols are of particular interest to researchers: dust, two kinds of carbon particles (soot and organic carbon), sulfate (emitted during events like volcanic eruptions or the burning of fossil fuels), and sea salt. The authors identified where aerosol atmospheric rivers tend to occur and how often extreme events, similar to the Godzilla dust storm, happen each year. To do this, they took a computer program they previously developed to detect atmospheric rivers around the world that move water vapor and produce precipitation, and they modified it to detect aerosol atmospheric rivers instead.

The shift from using atmospheric rivers to study the movement of water vapor to using them to study aerosol transport was something of a revelation because researchers only started to use the global detection framework of atmospheric rivers to look at the movement of extreme amounts of water vapor about six years ago. The concept of atmospheric rivers is only about 20 years old.

"It took scientists time to recognize and leverage atmospheric rivers as a concept," said Duane Waliser, one of the study's co-authors and an atmospheric scientist at NASA's Jet Propulsion Laboratory in Southern California. And it wasn't until Waliser was speaking to his colleague, Arlindo da Silva, an aerosol researcher at NASA's Goddard Space Flight Center in Greenbelt, Maryland, about the atmospheric river concept that a light went on for both of the researchers. "We should take our algorithm and apply it to aerosols," Waliser said.

Location, Location, Location
After modifying the atmospheric river algorithm for aerosol atmospheric rivers, the study's authors applied it to a state-of-the-art reconstruction of Earth's atmosphere called the Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) from NASA's Global Modeling and Assimilation Office. It incorporates datasets from satellites, airborne instruments, and sensors on the ground from 1980 to the present to produce a representation of the structure of Earth's atmosphere every six hours.

MERRA-2 enabled da Silva, who led the analysis, and the other researchers to look back in time to analyze the location and frequency of aerosol atmospheric rivers around the world from 1997 to 2014. The study authors found that regions including the Sahara, Patagonia, Asian deserts and Namibia are big sources of dust aerosol atmospheric rivers, while areas like the eastern U.S., the southern Amazon and Africa, and northern India tend to produce ones dominated by soot resulting from wildfires and the burning of fossil fuels.

The analysis also showed these atmospheric rivers tend to move large amounts of aerosols in a limited number of extreme events instead of in a steady stream throughout the year.

"We were astonished to find that a few major events a year can transport between 40% to 100% of the aerosols moved by the atmosphere," said Sudip Chakraborty, an atmospheric scientist at JPL and a study co-author.

Now that scientists have a way of looking at aerosol atmospheric rivers globally, the framework gives them a way to study how these particle-laden rivers in the sky affect Earth's climate. This includes how aerosols interact with clouds to potentially super-charge storms, how these particles trap or reflect heat in the atmosphere, and whether phenomena like El Nino and La Nina affect atmospheric aerosol river pathways and frequency.

The new approach also gives researchers insight into how aerosol atmospheric rivers could affect communities around the world, through their impacts on air quality and visibility and their ability to move plant pathogens that can affect crops. "When you realize a lot of the transport is happening in just a few big events, then you know to focus on those big events," said da Silva.


Related Links
Climate at NASA
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Star light, star bright as explained by math
Thuwal, Saudi Arabia (SPX) Apr 27, 2021
Not all stars shine brightly all the time. Some have a brightness that changes rhythmically due to cyclical phenomena like passing planets or the tug of other stars. Others show a slow change in this periodicity over time that can be difficult to discern or capture mathematically. KAUST's Soumya Das and Marc Genton have now developed a method to bring this evolving periodicity within the framework of mathematically "cyclostationary" processes. "It can be difficult to explain the variations of the ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Boeing's troubled Starliner capsule now aiming for July launch

Space aged: wine matured aboard ISS expected to sell for $1mn

Blue Origin will fly first crew to space in July

US Aerospace Company Blue Origin to Begin Selling Tickets for Tourist Trips in Space

STELLAR CHEMISTRY
Touchdown! SpaceX successfully lands Starship rocket

SpaceX to launch lunar mission paid with cryptocurrency Dogecoin

Protests over SpaceX contract put timetable for lunar return in limbo

NASA announces launch plans for new Dream Chaser spaceplane

STELLAR CHEMISTRY
NASA's Ingenuity Helicopter to begin new demonstration phase

Perseverance rover captures sound of Ingenuity flying on Mars

Volcanoes on Mars could be active, raise possibility of recent habitable conditions

Why Ingenuity's fifth flight will be different

STELLAR CHEMISTRY
China wants to send spacecraft to edge of solar system to mark 100th year of PRC

China's space station takes shared future concept to space

China launches space station core module Tianhe

Core capsule launched into orbit

STELLAR CHEMISTRY
Egos clash in Bezos and Musk space race

SpaceX launches 60 Starlink satellites from Florida

Spacecraft magnetic valve used to fill drinks

Lithuania to become ESA Associate Member state

STELLAR CHEMISTRY
Large Chinese rocket segment disintegrates over Indian Ocean

3D printing could be used in search for black holes

US watching Chinese rocket's erratic re-entry: Pentagon

ESA to build second deep space dish in Australia

STELLAR CHEMISTRY
UBCO researcher uses geology to help astronomers find habitable planets

Hubble Watches How a Giant Planet Grows

Coldplay beam new song into space in chat with French astronaut

Astronomers detect first ever hydroxyl molecule signature in an exoplanet atmosphere

STELLAR CHEMISTRY
Juice arrives at ESA's technical heart

New Horizons reaches a rare space milestone

New research reveals secret to Jupiter's curious aurora activity

NASA's Europa Clipper builds hardware, moves toward assembly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.