24/7 Space News
ENERGY TECH
Improved fusion plasma predictions with multi-fidelity data modeling
illustration only
Improved fusion plasma predictions with multi-fidelity data modeling
by Riko Seibo
Tokyo, Japan (SPX) Dec 13, 2024

Fusion energy research is advancing worldwide as a potential solution to global energy challenges. Magnetic confinement fusion reactors, which rely on strong magnetic fields to trap extremely hot plasma, represent a key focus of these efforts. This complex engineering endeavor integrates technologies like superconducting magnets, advanced materials, and beam heating systems. At its core, understanding and predicting plasma behavior remains a significant physics challenge, involving intricate interactions between charged particles and electromagnetic fields.

Researchers utilize theoretical studies, supercomputing simulations, and experimental plasma turbulence measurements to understand plasma transport mechanisms. While numerical simulations based on physics can align with experimental data to some degree, discrepancies persist, limiting predictive reliability. Empirical models derived from experimental data offer another approach but may not accurately extend to future experimental devices due to data constraints. Each method has strengths and gaps, necessitating a blended approach for comprehensive plasma predictions.

To address this, researchers have adopted multi-fidelity modeling to enhance the accuracy of limited high-fidelity data by integrating abundant low-fidelity data. A novel method, nonlinear auto-regressive Gaussian process regression (NARGP), has been introduced for plasma turbulence modeling. Unlike traditional regression models relying on single input-output data pairs, NARGP incorporates multiple outputs of varying fidelity for the same input. This enables predictions of high-fidelity data by leveraging corresponding low-fidelity data.

The multi-fidelity approach has demonstrated improved prediction accuracy in various scenarios, including:

1. Integrating low- and high-resolution simulation data.

2. Predicting turbulent diffusion coefficients using experimental fusion plasma datasets.

3. Combining simplified theoretical models with turbulence simulation data.

By incorporating theory- and simulation-based predictions as low-fidelity inputs, the method compensates for gaps in experimental high-fidelity data, achieving better accuracy. These findings were published in *Scientific Reports* by Nature Publishing Group.

Traditionally, plasma turbulent transport modeling relied on either theoretical and simulation-based predictions or empirical models from experimental data. This new approach bridges these methods, combining theoretical predictability with the precision of experimental insights to forecast future nuclear fusion burning plasmas.

The multi-fidelity modeling method extends beyond fusion research. It holds promise for applications in other fields, providing a general framework for creating accurate, efficient prediction models using limited high-precision data. This could enhance performance predictions, optimize reactor designs, and spur innovation across diverse technological domains.

Research Report:Multi-Fidelity Information Fusion for Turbulent Transport Modeling in Magnetic Fusion Plasma

Related Links
National Institute for Fusion Science
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
Battery-like memory withstands extreme heat for future applications
Los Angeles CA (SPX) Dec 13, 2024
A team of engineers led by the University of Michigan has developed a groundbreaking memory device capable of operating at extreme temperatures, enabling potential use in fusion reactors, jet engines, geothermal wells, and even otherworldly environments. Unlike standard silicon-based memory, the innovative solid-state device maintains functionality at over 600C, temperatures that surpass the surface heat of Venus and exceed the melting point of lead. This advancement was achieved in collaboration ... read more

ENERGY TECH
ESA to collaborate with ISRO on Gaganyaan missions

Week starts on ISS with spacewalk preparations and research activities

Neuraspace expands satellite tracking with second optical telescope in Chile

Indian Navy and ISRO conduct astronaut well deck recovery trials for Gaganyaan Mission

ENERGY TECH
Undeterred by Friday the 13th, SpaceX plans pair of launches

China Long March 8A prepares for first flight in January 2025

NASA's crew capsule had heat shield issues during Artemis I

Equatorial Launch Australia shifts focus to new Queensland spaceport site

ENERGY TECH
Mars dust storms may be linked to warming weather patterns

Liquid on Mars was not necessarily all water

Purdue scientist expecting new world to reveal itself to Mars rover

China's Tianwen-1 probe reveals new insights into Martian internal gravity waves

ENERGY TECH
China boosts Lunar and Mars mission capabilities with advanced Long March rockets

Long March 12 set for inaugural launch from Hainan space center

China inflatable space capsule aces orbital test

Tianzhou 7 completes cargo Mission, Tianzhou 8 docks with Tiangong

ENERGY TECH
AST SpaceMobile and Vodafone sign long-term agreement for global connectivity

Seaspan signs agreement with KVH for OneWeb LEO satellite solution

EIB backs Sateliot's IoT Satellite Network with euro 30M loan

Airbus completes delivery of Space42 Thuraya 4 satellite for December launch

ENERGY TECH
Stretchable, flexible, recyclable. This plastic is fantastic

Speaking crystal AI predicts atomic arrangements to aid material discovery

Researchers uncover strong light-matter interactions in quantum spin liquids

Cracking the Code for materials that can learn

ENERGY TECH
Discovery of a planet with a shifting gas tail

Unveiling a hydrogen-controlled nano-switch in electron transport proteins

Scientists examine role of iron sulfides in life's origins at early Earth hot springs

Towards independent robotic exploration of ocean worlds

ENERGY TECH
NASA marks ten years of Hubble's Outer Planets Survey

Magnetic tornado is stirring up the haze at Jupiter's poles

Uranus moons could hold clues to hidden oceans for future space missions

A clue to what lies beneath the bland surfaces of Uranus and Neptune

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.