. 24/7 Space News .
STELLAR CHEMISTRY
Identifying light sources using artificial intelligence
by Staff Writers
Washington DC (SPX) May 06, 2020

A detector (the eye) measures identical photons from natural sunlight and laser light. The fast identification of light sources is performed by an artificial neuron that is trained to efficiently extract patterns in the quantum fluctuations of photons.

Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy. Traditionally, identifying light sources as diverse as sunlight, laser radiation, or molecule fluorescence has required millions of measurements, particularly in low-light environments, which limits the realistic implementation of quantum photonic technologies.

In Applied Physics Reviews, from AIP Publishing, researchers demonstrated a smart quantum technology that enables a dramatic reduction in the number of measurements required to identify light sources.

"We trained an artificial neuron with the statistical fluctuations that characterize coherent and thermal light," said Omar Magana-Loaiza, an author of the paper.

After researchers trained the artificial neuron with light sources, the neuron could identify underlying features associated with specific types of light.

"A single neuron is enough to dramatically reduce the number of measurements needed to identify a light source from millions to less than hundred," said Chenglong You, a fellow researcher and co-author on the paper.

With fewer measurements, researchers can identify light sources much more quickly, and in certain applications, such as microscopy, they can limit light damage since they don't have to illuminate the sample nearly as many times when taking measurements.

"If you were doing an imaging experiment with delicate fluorescent molecular complexes, for example, you could reduce the time the sample is exposed to light and minimize any photodamage," said Roberto de J. Leon-Montiel, another co-author.

Cryptography is another application where these findings could prove valuable. Typically to generate a key to encrypt an email or message, researchers need to take millions of measurements. "We could speed up the generation of quantum keys for encryption using a similar neuron," said Magana-Loaiza.

As laser light plays an important role in remote sensing, this work could also enable development of a new family of smart lidar systems with the capability to identify intercepted or modified information reflected from a remote object. Lidar is a remote sensing method that measures distance to a target by illuminating the target with laser light and measuring the reflected light with a sensor.

"The probability of jamming a smart quantum lidar system will be dramatically reduced with our technology," he said. In addition, the possibility to discriminate lidar photons from environmental light such as sunlight will have important implications for remote sensing at low-light levels.

Research Report: "Identification of light sources using machine learning"


Related Links
American Institute Of Physics
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
New metasurface laser produces world's first super-chiral light
Johannesburg, South Africa (SPX) Apr 28, 2020
Researchers have demonstrated the world's first metasurface laser that produces "super-chiral light": light with ultra-high angular momentum. The light from this laser can be used as a type of "optical spanner" to or for encoding information in optical communications. "Because light can carry angular momentum, it means that this can be transferred to matter. The more angular momentum light carries, the more it can transfer. So you can think of light as an 'optical spanner'," Professor Andrew Forbe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
180 day commercial Soyuz mission to ISS possible in 2022

Russian cargo capsule docks with ISS

Pentagon formally releases Navy videos of unidentified object encounters

Russian 'Victory Rocket' cargo flight docks at ISS

STELLAR CHEMISTRY
Launches from Kourou to resume in June

Solar One: A proposal for the first manned interstellar spaceship

Permanently open call for commercial space transportation services

NASA Test Directors eagerly await Artemis launch

STELLAR CHEMISTRY
Emirates first Mars mission ready for launch from Japan's Tanegashima Space Centre

Martian meteorites contain 4-billion-year-old nitrogen-bearing organic material

NASA's Mars Helicopter named Ingenuity

Promising signs for Perseverance rover in its quest for past Martian life

STELLAR CHEMISTRY
China builds Asia's largest steerable radio telescope for Mars mission

China recollects first satellite stories after entering space for 50 years

China's first Mars exploration mission named Tianwen-1

Parachutes guide China's rocket debris safely to earth

STELLAR CHEMISTRY
Infostellar has raised a total of $3.5M in convertible bonds

SpaceX develops new sunshade to make Starlink satellites less visible from Earth

Elon Musk's SpaceX launches 60 Starlink satellites from Florida

Momentus selected as launch provider for Swarm

STELLAR CHEMISTRY
Study highlights gallium oxide's promise for next generation radiation detectors

'Animal Crossing' offers digital getaway under lockdown

Sustainable structural material for plastic substitute

In search of the lighting material of the future

STELLAR CHEMISTRY
Newly discovered exoplanet dethrones former king of Kepler-88 planetary system

Hubble observes aftermath of massive collision

Researchers use 'hot Jupiter' data to mine exoplanet chemistry

Yale's EXPRES looks to the skies of a scorching, distant planet

STELLAR CHEMISTRY
Jupiter probe JUICE: Final integration in full swing

The birth of a "Snowman" at the edge of the Solar System

New Horizons pushing the frontier ever deeper into the Kuiper Belt

Mysteries of Uranus' oddities explained by Japanese astronomers









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.