![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Oct 28, 2020
Ice loss from the Greenland Ice Sheet has accelerated significantly over the past two decades, transforming the shape of the ice sheet edge and therefore coastal Greenland, according to new research. A new study in AGU's Journal of Geophysical Research: Earth Surface, which publishes research on the processes affecting the form and function of Earth's surface, finds these changes could have far-reaching impacts on ecosystems and communities as the flow of water, nutrients and sediments under the ice sheet are altered. "The speed of ice loss in Greenland is stunning," said Twila Moon, deputy lead scientist at the National Snow and Ice Data Center in Boulder, Colorado and lead author of the new study. "We can now see many signs of a transformed landscape from space. And as the ice sheet edge responds to rapid ice loss, the character and behavior of the system as a whole is changing, with the potential to influence ecosystems and people who depend on them." In the new study, researchers compiled data from NASA, USGS and other satellites from 1985 to 2015 to compare ice edge position, ice sheet surface elevation, and glacier flow over three decades. Advancements in satellite technology allowed them to observe the changes to the ice sheet in much greater detail than was possible in the past. Using these comparisons, the researchers developed a few key findings. The most consistent trend, found across the entire ice sheet, is widespread ice edge retreat. While there is a range of behavior among glaciers across the ice sheet, there is a noticeable lack of sustained ocean-connected glacier advance. Out of 225 ocean-connected glaciers that were measured, none have substantially advanced while 200 have retreated, particularly since the year 2000. This is notable even in regions dominated by slower-moving glaciers and cooler ocean water, such as the northern and northeastern regions of the ice sheet. In addition, while most glaciers are retreating, ice flow response on those glaciers, such as speeding up or slowing down, is affected in large part by topography and upstream factors. This includes the slope of the landscape and the presence and shape of bedrock and sediments underneath the glacier. Therefore, even glaciers within the same regional or local area can behave differently. As the researchers examined changes in the Greenland Ice Sheet, they found that zones of fast glacier flow are narrowing, ice is being rerouted, and in some cases, the flow of new ice to glaciers is slowed, stranding glaciers in place. These processes could have a variety of downstream impacts, such as altering how water moves under the ice sheet, which could affect the availability of water to communities and animals, altering where nutrients and sediment enter the ocean, exposing new land areas, opening new fjord waters, and altering ecosystems and physical landscapes. "As the Arctic ocean and atmosphere warm, we can clearly see the flow of ice into the ocean accelerate and the ice edge retreat," said Alex Gardner, a research scientist at NASA's Jet Propulsion Laboratory in Pasadena, California and co-author of the study. "When we look more closely, however, we can see the complexity of how individual glaciers respond, owing to differences in the properties of the ocean water that reach the glacier front, the bedrock and till that lie below, and in how meltwater runoff is routed beneath. Understanding the complexity of individual glacier response is critical to improving projections of ice sheet change and the associated sea level rise that will arrive at our shores." The researchers hope the study findings can help project future changes in ice sheet dynamics, ice loss and local to regional impacts as global warming continues to reshape the cryosphere.
![]() ![]() The arrival of seabirds transformed the Falkland Islands 5,000 years ago Washington DC (UPI) Oct 23, 2020 Roughly 5,000 years ago, seabirds colonized the Falkland Islands in record numbers. New research - published Friday in the journal Science Advances - suggests the seabirds arrived around the same time that the South Atlantic cooled, and their arrival shifted the ecosystems on the Falkland Islands. Today, the remote South Atlantic islands remain a refuge for several important seabird species, including great shearwaters, black-browed albatrosses, white-chinned petrels and five species of pengu ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |