![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Pasadena CA (JPL) Mar 23, 2017
Dwarf planet Ceres may be hundreds of millions of miles from Jupiter, and even farther from Saturn, but the tremendous influence of gravity from these gas giants has an appreciable effect on Ceres' orientation. In a new study, researchers from NASA's Dawn mission calculate that the axial tilt of Ceres - the angle at which it spins as it journeys around the sun - varies widely over the course of about 24,500 years. Astronomers consider this to be a surprisingly short period of time for such dramatic deviations. Changes in axial tilt, or "obliquity," over the history of Ceres are related to the larger question of where frozen water can be found on Ceres' surface, scientists report in the journal Geophysical Research Letters. Given conditions on Ceres, ice would only be able to survive at extremely cold temperatures - for example, in areas that never see the sun. "We found a correlation between craters that stay in shadow at maximum obliquity, and bright deposits that are likely water ice," said Anton Ermakov, postdoctoral researcher at NASA's Jet Propulsion Laboratory, Pasadena, California, and lead author of the study. "Regions that never see sunlight over millions of years are more likely to have these deposits."
Cycles of Obliquity "We cannot directly observe the changes in Ceres' orientation over time, so we used the Dawn spacecraft's measurements of shape and gravity to precisely reconstruct what turned out to be a dynamic history," said Erwan Mazarico, a co-author at NASA's Goddard Space Flight Center in Greenbelt, Maryland. The last time the dwarf planet reached a maximum tilt, which was about 19 degrees, was 14,000 years ago, researchers said. For comparison, Earth is tilted 23.5 degrees. This significant tilt causes our planet to experience seasons: The northern hemisphere experiences summer when it is oriented toward the sun, and winter when it's pointed away from the sun. By contrast, Ceres' current tilt is about 4 degrees, so it will not have such strong seasonal effects over the course of a year there (which is about 4.6 Earth years).
How Obliquity Relates to Ice These craters with areas that stay in shadow over long periods of time are called "cold traps," because they are so cold and dark that volatiles - substances easily vaporized - that migrate into these areas can't escape, even over a billion years. A 2016 study by the Dawn team in Nature Astronomy found bright material in 10 of these craters, and data from Dawn's visible and infrared mapping spectrometer indicate that one of them contains ice. The new study focused on polar craters and modeled how shadowing progresses as Ceres' axial tilt varies. In the northern hemisphere, only two persistently shadowed regions remain in shadow at the maximum 20-degree tilt. Both of these regions have bright deposits today. In the southern hemisphere, there are also two persistently shadowed regions at highest obliquity, and one of them clearly has a bright deposit.
Shadowed Regions in Context The origin of the ice in Ceres' cold traps is more mysterious - it may come from Ceres itself, or may be delivered by impacts from asteroids and comets. Regardless, the presence of ice in cold traps could be related to a tenuous water atmosphere, which was detected by ESA's Herschel Space Observatory in 2012-13. Water molecules that leave the surface would fall back onto Ceres, with some landing in cold traps and accumulating there. "The idea that ice could survive on Ceres for long periods of time is important as we continue to reconstruct the dwarf planet's geological history, including whether it has been giving off water vapor," said Carol Raymond, deputy principal investigator of the Dawn mission and study co-author, based at JPL.
![]() Gottingen, Germany (SPX) Mar 15, 2017 Among the most striking features on the surface of Ceres are the bright spots in the center of Occator crater which stood out already as NASA's space probe Dawn approached the dwarf planet. Scientists under the leadership of the Max Planck Institute for Solar System Research (MPS) have now for the first time determined the age of this bright material, which consists mainly of deposits of special ... read more Related Links Dawn at NASA Asteroid and Comet Mission News, Science and Technology
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |