. 24/7 Space News .
STELLAR CHEMISTRY
Hubble uses cosmic lens to discover most distant star ever observed
by Staff Writers
Munich, Germany (SPX) Apr 03, 2018

After the discovery the researchers used Hubble again to measure a spectrum of LS1. Based on their analysis, the astronomers think that LS1 is a B-type supergiant star. These stars are extremely luminous and blue in colour, with a surface temperature between 11 000 and 14 000 degrees Celsius; making them more than twice as hot as the Sun.

Astronomers using the NASA/ESA Hubble Space Telescope have found the most distant star ever discovered. The hot blue star existed only 4.4 billion years after the Big Bang. This discovery provides new insight into the formation and evolution of stars in the early Universe, the constituents of galaxy clusters and also on the nature of dark matter.

The international team, led by Patrick Kelly (University of Minnesota, USA), Jose Diego (Instituto de Fisica de Cantabria, Spain) and Steven Rodney (University of South Carolina, USA), discovered the distant star in the galaxy cluster MACS J1149-2223 in April 2016. The observations with Hubble were actually performed in order to detect and follow the latest appearance of the gravitationally lensed supernova explosion nicknamed "Refsdal" (heic1525), when an unexpected point source brightened in the same galaxy that hosted the supernova.

"Like the Refsdal supernova explosion the light of this distant star got magnified, making it visible for Hubble," says Patrick Kelly. "This star is at least 100 times farther away than the next individual star we can study, except for supernova explosions."

The observed light from the newly discovered star, called Lensed Star 1 (LS1) was emitted when the Universe was only about 30 percent of its current age - about 4.4 billion years after the Big Bang. The detection of the star through Hubble was only possible because the light from the star was magnified 2000 times.

"The star became bright enough to be visible for Hubble thanks to a process called gravitational lensing," explains Jose Diego. The light from LS1 was magnified not only by the huge total mass of the galaxy cluster, but also by another compact object of about three times the mass of the Sun within the galaxy cluster itself; an effect known as gravitational microlensing.

"The discovery of LS1 allows us to gather new insights into the constituents of the galaxy cluster. We know that the microlensing was caused by either a star, a neutron star, or a stellar-mass black hole," explains Steven Rodney. LS1 therefore allows astronomers to study neutron stars and black holes, which are otherwise invisible and they can estimate how many of these dark objects exist within this galaxy cluster.

As galaxy clusters are among the largest and most massive structures in the Universe, learning about their constituents also increases our knowledge about the composition of the Universe overall. This includes additional information about the mysterious dark matter.

"If dark matter is at least partially made up of comparatively low-mass black holes, as it was recently proposed, we should be able to see this in the light curve of LS1. Our observations do not favour the possibility that a high fraction of dark matter is made of these primordial black holes with about 30 times the mass of the Sun", highlights Kelly.

After the discovery the researchers used Hubble again to measure a spectrum of LS1. Based on their analysis, the astronomers think that LS1 is a B-type supergiant star. These stars are extremely luminous and blue in colour, with a surface temperature between 11 000 and 14 000 degrees Celsius; making them more than twice as hot as the Sun.

But this was not the end of the story. Observations made in October 2016 suddenly showed a second image of the star. "We were actually surprised to not have seen this second image in earlier observations, as also the galaxy the star is located in can be seen twice," comments Diego.

"We assume that the light from the second image has been deflected by another moving massive object for a long time - basically hiding the image from us. And only when the massive object moved out of the line of sight the second image of the star became visible." This second image and the blocking object add another piece of the puzzle to reveal the makeup of galaxy clusters.

With more research and the imminent arrival of new, more powerful telescopes like the NASA/ESA/CSA James Webb Space Telescope, the astronomers suggest that with microlensing, it will be possible to study the evolution of the earliest stars in the Universe in greater detail than ever expected.

Observations of this supernova, nicknamed Refsdal in honour of the Norwegian astronomer Sjur Refsdal, were made as part of Hubble's Frontier Fields project.

Research paper


Related Links
Hubble Information Centre
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Arrested development: Hubble finds relic galaxy close to home
Washington DC (SPX) Mar 14, 2018
Astronomers have put NASA's Hubble Space Telescope on an Indiana Jones-type quest to uncover an ancient "relic galaxy" in our own cosmic backyard. The very rare and odd assemblage of stars has remained essentially unchanged for the past 10 billion years. This wayward stellar island provides valuable new insights into the origin and evolution of galaxies billions of years ago. The galaxy, NGC 1277, started its life with a bang long ago, ferociously churning out stars 1,000 times faster than s ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
NASA accepting applications for mission control leaders

Out of this world: Inside Japan's space colony centre

Aerospace Tech Startups Get a Chance to Pitch at JPL

US astronauts make spacewalk to perform ISS repairs

STELLAR CHEMISTRY
University student projects launch from NASA Wallops

SpaceX launches cargo to space station using recycled rocket, spaceship

New research payloads heading to ISS on SpaceX Resupply Mission

Funds shortage pulls the brakes on India's crucial space programs

STELLAR CHEMISTRY
Opportunity making extensive study of rock target Aguas Calientes

Curiosity rover gets ready for its next adventure

First test success for largest Mars mission parachute

Opportunity Completes In-Situ Work on 'Aguas Calientes'

STELLAR CHEMISTRY
Earth-bound Chinese spacelab plunging to fiery end

China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

STELLAR CHEMISTRY
Relativity Space raises 35M in Series B funding

Storm hunter launched to International Space Station

SSL to build direct broadcasting satellite for B-SAT

SpaceX says Iridium satellite payload deployed

STELLAR CHEMISTRY
The Problem With Space Junk is We Don't Know Where Most Objects Are

Finding order in disorder demonstrates a new state of matter

Mars mission: how increasing levels of space radiation may halt human visitors

Point Nemo, Earth's watery graveyard for spacecraft

STELLAR CHEMISTRY
NASA prepares to launch next ExoPlanet mission

Is there life adrift in the clouds of Venus?

Characterization of a water world in a multi-exoplanetary system

Hot, metallic Mercury-like exoplanet discovered 340 light-years from Earth

STELLAR CHEMISTRY
Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks

Jupiter's Jet-Streams Are Unearthly









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.