. | . |
Hubble gives unprecedented, early view of a doomed star's destruction by Agency Writers Baltimore MD (SPX) Oct 25, 2021
Like a witness to a violent death, NASA's Hubble Space Telescope recently gave astronomers an unprecedented, comprehensive view of the first moments of a star's cataclysmic demise. Hubble's data, combined with other observations of the doomed star from space- and ground-based telescopes, may give astronomers an early warning system for other stars on the verge of blowing up. "We used to talk about supernova work like we were crime scene investigators, where we would show up after the fact and try to figure out what happened to that star," explained Ryan Foley of the University of California, Santa Cruz, the leader of the team that made this discovery. "This is a different situation, because we really know what's going on and we actually see the death in real time."
Telescope Teamwork Together, these observatories gave the first holistic view of a star in the very earliest stage of destruction. Hubble probed the material very close to the star, called circumstellar material, mere hours after the explosion. This material was blown off the star in the last year of its life. These observations allowed astronomers to understand what was happening to the star just before it died. "We rarely get to examine this very close-in circumstellar material since it is only visible for a very short time, and we usually don't start observing a supernova until at least a few days after the explosion," explained Samaporn Tinyanont, lead author on the study's paper published in the Monthly Notices of the Royal Astronomical Society. "For this supernova, we were able to make ultra-rapid observations with Hubble, giving unprecedented coverage of the region right next to the star that exploded."
Telling the Star's Story "Now we have this whole story about what's happening to the star in the years before it died, through the time of death, and then the aftermath of that," said Foley. "This is really the most detailed view of stars like this in their last moments and how they explode."
The Rosetta Stone of Supernovae In the case of this supernova, the science team used three different methods to determine the mass of the exploding star. These included comparing the properties and the evolution of the supernova with theoretical models; using information from a 1997 archival Hubble image of the star to rule out higher-mass stars; and using observations to directly measure the amount of oxygen in the supernova, which probes the mass of the star. The results are all consistent: around 14 to 15 times the mass of the Sun. Accurately determining the mass of the star that explodes in a supernova is crucial to understanding how massive stars live and die. "People use the term 'Rosetta Stone' a lot. But this is the first time we've been able to verify the mass with these three different methods for one supernova, and all of them are consistent," said Tinyanont. "Now we can push forward using these different methods and combining them, because there are a lot of other supernovae where we have masses from one method but not another."
An Early Warning System? "This could be a warning system," said Foley. "So if you see a star start to shake around a bit, start acting up, then maybe we should pay more attention and really try to understand what's going on there before it explodes. As we find more and more of these supernovae with this sort of excellent data set, we'll be able to understand better what's happening in the last few years of a star's life." The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, in Washington, D.C.
Dwarf galaxy catches globular cluster Amsterdam, Netherlands (SPX) Oct 19, 2021 Astronomers already knew that our own Milky Way grew by taking in smaller galaxies. But now a team of Italian-Dutch researchers have shown that a small galaxy neighbouring the Milky Way has in turn absorbed an even smaller galaxy from its vicinity. The researchers will publish their findings on Monday in the journal Nature Astronomy. According to the prevailing theory, large galaxies such as our Milky Way were formed by mergers with smaller galaxies. In recent years, evidence for this has indeed b ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |