. | . |
Hubble finds early, massive galaxies running on empty by Agency Writers Baltimore MD (SPX) Sep 24, 2021
When the universe was about 3 billion years old, just 20% of its current age, it experienced the most prolific period of star birth in its history. But when NASA's Hubble Space Telescope and the Atacama Large Millimeter/submillimeter Array (ALMA) in northern Chile gazed toward cosmic objects in this period, they found something odd: six early, massive, "dead" galaxies that had run out of the cold hydrogen gas needed to make stars. Without more fuel for star formation, these galaxies were literally running on empty. The findings are published in the journal Nature. "At this point in our universe, all galaxies should be forming lots of stars. It's the peak epoch of star formation," explained lead author Kate Whitaker, assistant professor of astronomy at the University of Massachusetts, Amherst. Whitaker is also associate faculty at the Cosmic Dawn Center in Copenhagen, Denmark. "So what happened to all the cold gas in these galaxies so early on?" This study is a classic example of the harmony between Hubble and ALMA observations. Hubble pinpointed where in the galaxies the stars exist, showing where they formed in the past. By detecting the cold dust that serves as a proxy for the cold hydrogen gas, ALMA showed astronomers where stars could form in the future if enough fuel were present.
Using Nature's Own Telescopes The REQUIEM team uses extremely massive foreground galaxy clusters as natural telescopes. The immense gravity of a galaxy cluster warps space, bending and magnifying light from background objects. When an early, massive, and very distant galaxy is positioned behind such a cluster, it appears greatly stretched and magnified, allowing astronomers to study details that would otherwise be impossible to see. This is called "strong gravitational lensing." Only by combining the exquisite resolution of Hubble and ALMA with this strong lensing was the REQUIEM team able to able to understand the formation of these six galaxies, which appear as they did only a few billion years after the big bang. "By using strong gravitational lensing as a natural telescope, we can find the distant, most massive, and first galaxies to shut down their star formation," said Whitaker. "I like to think about it like doing science of the 2030s or 40s - with powerful next-generation space telescopes - but today instead by combining the capabilities of Hubble and ALMA, which are boosted by strong lensing." "REQUIEM pulled together the largest sample to date of these rare, strong-lensed, dead galaxies in the early universe, and strong lensing is the key here," said Mohammad Akhshik, principal investigator of the Hubble observing program. "It amplifies the light across all wavelengths so that it's easier to detect, and you also get higher spatial resolution when you have these galaxies stretched across the sky. You can essentially see inside of them at much finer physical scales to figure out what's happening."
Live Fast, Die Young These six galaxies lived fast and furious lives, creating their stars in a remarkably short time. Why they shut down star formation so early is still a puzzle. Whitaker proposes several possible explanations: "Did a supermassive black hole in the galaxy's center turn on and heat up all the gas? If so, the gas could still be there, but now it's hot. Or it could have been expelled and now it's being prevented from accreting back onto the galaxy. Or did the galaxy just use it all up, and the supply is cut off? These are some of the open questions that we'll continue to explore with new observations down the road."
Hubble discovers hydrogen-burning white dwarfs enjoying slow aging Baltimore MD (SPX) Sep 07, 2021 Could dying stars hold the secret to looking younger? New evidence from NASA's Hubble Space Telescope suggests that white dwarf stars could continue to burn hydrogen in the final stages of their lives, causing them to appear more youthful than they actually are. This discovery could have consequences for how astronomers measure the ages of star clusters, which contain the oldest known stars in the universe. These results challenge the prevalent view of white dwarfs as inert, slowly cooling burned- ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |