. 24/7 Space News .
STELLAR CHEMISTRY
Hubble Captures Galaxy's Biggest Ongoing Stellar Fireworks Show
by Staff Writers
Baltimore MD (SPX) Jul 05, 2019

Giant star yields new clues about turbulent life

Imagine slow-motion fireworks that started exploding 170 years ago and are still continuing. This type of firework is not launched into Earth's atmosphere, but rather into space by a doomed super-massive star, called Eta Carinae, the largest member of a double-star system. A new view from NASA's Hubble Space Telescope, which includes ultraviolet light, shows the star's hot, expanding gases glowing in red, white, and blue. Eta Carinae resides 7,500 light-years away.

The celestial outburst takes the shape of a pair of ballooning lobes of dust and gas and other filaments that were blown out from the petulant star. The star may have initially weighed more than 150 Suns. For decades, astronomers have speculated about whether it is on the brink of total destruction.

The fireworks started in the 1840s when Eta Carinae went through a titanic outburst, called the Great Eruption, making it the second-brightest star visible in the sky for over a decade. Eta Carinae, in fact, was so bright that for a time it became an important navigational star for mariners in the southern seas.

The star has faded since that eruption and is now barely visible to the unaided eye. But the fireworks aren't over yet because Eta Carinae still survives. Astronomers have used almost every instrument on Hubble over the past 25 years to study the rambunctious star.

Using Hubble's Wide Field Camera 3 to map the ultraviolet-light glow of magnesium embedded in warm gas (shown in blue), astronomers were surprised to discover the gas in places they had not seen it before.

Scientists have long known that the outer material thrown off in the 1840s eruption has been heated by shock waves after crashing into the doomed star's previously ejected material. In the new images, the team had expected to find light from magnesium coming from the same complicated array of filaments as seen in the glowing nitrogen (shown in red). Instead, a completely new luminous magnesium structure was found in the space between the dusty bipolar bubbles and the outer shock-heated nitrogen-rich filaments.

"We've discovered a large amount of warm gas that was ejected in the Great Eruption but hasn't yet collided with the other material surrounding Eta Carinae," explained Nathan Smith of Steward Observatory at the University of Arizona in Tucson, Arizona, lead investigator of the Hubble program. "Most of the emission is located where we expected to find an empty cavity. This extra material is fast, and it 'ups the ante' in terms of the total energy for an already powerful stellar blast."

The newly revealed gas is important for understanding how the eruption began, because it represents the fast and energetic ejection of material that may have been expelled by the star shortly before the expulsion of the bipolar lobes. Astronomers need more observations to measure exactly how fast the material is moving and when it was ejected.

The streaks visible in the blue region outside the lower-left lobe are a striking feature in the image. These streaks are created when the star's light rays poke through the dust clumps scattered along the bubble's surface. Wherever the ultraviolet light strikes the dense dust, it leaves a long, thin shadow that extends beyond the lobe into the surrounding gas.

"The pattern of light and shadow is reminiscent of sunbeams that we see in our atmosphere when sunlight streams past the edge of a cloud, though the physical mechanism creating Eta Carinae's light is different," noted team member Jon Morse of BoldlyGo Institute in New York.

This technique of searching in ultraviolet light for warm gas could be used to study other stars and gaseous nebulas, the researchers say.

"We had used Hubble for decades to study Eta Carinae in visible and infrared light, and we thought we had a pretty full accounting of its ejected debris. But this new ultraviolet-light image looks astonishingly different, revealing gas we did not see in other visible-light or infrared images," Smith said.

"We're excited by the prospect that this type of ultraviolet magnesium emission may also expose previously hidden gas in other types of objects that eject material, such as protostars or other dying stars. Only Hubble can take these kinds of pictures."

Eta Carinae has had a violent history, prone to chaotic eruptions that blast parts of itself into space like an interstellar geyser. One explanation for the monster star's antics is that the convulsions were caused by a complex interplay of as many as three stars, all gravitationally bound in one system. In this scenario, the most massive member would have swallowed one of the stars, igniting the massive Great Eruption of the mid-1800s. Evidence for that event lies in the huge, expanding bipolar lobes of hot gas surrounding the system.

A fortuitous trick of nature also allowed astronomers in a previous Hubble study to analyze the Great Eruption in detail. Some of the light from the eruption took an indirect path to Earth and is just arriving now. The wayward light was heading away from our planet when it bounced off dust clouds lingering far from the turbulent stars and was rerouted to Earth, an effect called a "light echo."

The stellar behemoth will eventually reach its fireworks show finale when it explodes as a supernova. This may have already happened, although the geyser of light from such a brilliant blast hasn't yet reached Earth.


Related Links
Space Telescope Science Institute
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Hubble, Spitzer telescopes conduct chemical survey of mid-size exoplanet
Washington (UPI) Jul 2, 2019
For the first time, scientists, with the help of a pair of NASA space telescopes, have identified the chemical signature of the atmosphere surrounding a mid-sized exoplanet. In size, mass and composition, Gliese 3470 b is like a cross between Earth and Neptune - a rocky core surrounded by a thick layer of gas. The exoplanet weighs 12.6 Earth masses. Neptune by comparison, weighs 17 Earth masses. Mid-sized planets like Gliese 3470 b are common in other planetary systems, but are absent i ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
What a Space Vacation Deal

LightSail 2 phones home to mission control

Aerojet Rocketdyne Delivers Orion Auxiliary Engines for Artemis 2

Left in the Dust: Poll Reveals Americans Don't Believe US Leads in Space Exploration

STELLAR CHEMISTRY
ULA says malfunction of Russian RD-180 rocket engine occurred in 2018 during Atlas V launch

Rocket Lab successfully launches seventh Electron mission, deploys seven satellites to orbit

ESA expertise to support Portugal's launch program

Last Test Article for NASA's SLS Rocket Departs Michoud Assembly Facility

STELLAR CHEMISTRY
Mars 2020 Rover Gets a Super Instrument

Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed

Inflatable Decelerator Will Hitch a Ride on the JPSS-2 Satellite

A chaos found only on Mars

STELLAR CHEMISTRY
China plans to deploy almost 200 AU-controlled satellites into orbit

Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

STELLAR CHEMISTRY
Israeli space tech firm hiSky expands to the UK

All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Newtec collaborates with QinetiQ, marking move into space sector

RBC Signals awarded SBIR Phase I contract by US Air Force

STELLAR CHEMISTRY
First taste of space for Spacebus Neo satellite

ThinKom completes technology validation on Telesat low-earth orbit satellite

ATLAS expands on-orbit customer base, bolsters global ground network

Space Weather causes years of radiation damage to satellites using electric propulsion

STELLAR CHEMISTRY
Planet Seeding and Panspermia

ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

NASA's TESS Mission Finds Its Smallest Planet Yet

Cyanide Compounds Discovered in Meteorites May Hold Clues to the Origin of Life

STELLAR CHEMISTRY
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.