. 24/7 Space News .
PHYSICS NEWS
How to weigh stars with gravitational lensing
by Staff Writers
Washington DC (SPX) Jul 24, 2018

file illustration only

Every star in the Milky Way is in motion. But because of the distances their changes in position, the so-called proper motions, are very small and can only be measured using large telescopes over long time periods. In very rare cases, a foreground star passes a star in the background, at close proximity as seen from Earth.

Light from this background star must cross the gravitational field of the foreground star where, instead of following straight paths, the light rays are bent. This is like a lens, except here the deviation is caused by the space and time distortion around any massive body.

This effect was one of the cornerstone predictions of Einstein's general theory of relativity and has been verified in solar system tests for decades. This distortion of the light by the foreground star is called gravitational lensing: the light of the background star is deviated or focused into a smaller angle, and the star appears brighter.

The main effect is the change in the star's apparent position on the sky because the deviation shifts the centre of light relative to other more distant stars. Both of these effects depend on only one thing, the mass of the lensing body, in this case that of the foreground star. Thus, gravitational lensing is a method for weighing stars. Actually, measuring the mass of stars that are not part of a binary star is otherwise extremely difficult to do.

Previously, the difficulty in this method was being able to predict the motions of the stars with high enough precision. The spectacular data set of literally billions of stellar positions and proper motions recently published as the Gaia Data Release 2 by the ESA Gaia consortium has made this research possible. These data were used by Jonas Kluter, who is doing a PhD at Heidelberg University, to search for such close passages of stars.

Of the many close encounters which will happen in the next 50 years, two passages are going on right now: the closest angular separations will be reached in the next few weeks with measurable effects on the positions of the background stars. The names of these two foreground stars are Luyten 143-23 and Ross 322; they move across the sky with apparent velocities of about 1,600 and 1,400 milliarcseconds per year, respectively.

The closest angular separations between foreground and background stars will occur in July and August 2018, respectively, when the apparent positions of the background stars will be shifted, due to the astrometric microlensing effect, by 1.7 and 0.8 milliarcseconds. One milliarcsecond corresponds to the angle under which a human being lying on the surface of the moon would be seen. It is a challenging task, but with the best telescopes on Earth, these displacements of stellar positions are measurable.

Jonas Kluter and his colleagues Ulrich Bastian, Markus Demleitner, and Joachim Wambsganss are planning an observational campaign using the telescopes of the European Southern Observatory (ESO) in Chile in order to track the positional changes of the background stars and to directly measure the masses of the foreground stars Luyten 143-23 and Ross 322.

Research paper


Related Links
Astronomy and Astrophysics
The Physics of Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


PHYSICS NEWS
Could Gravitational Waves Reveal How Fast Our Universe Is Expanding?
Boston MA (SPX) Jul 12, 2018
ince it first exploded into existence 13.8 billion years ago, the universe has been expanding, dragging along with it hundreds of billions of galaxies and stars, much like raisins in a rapidly rising dough. Astronomers have pointed telescopes to certain stars and other cosmic sources to measure their distance from Earth and how fast they are moving away from us - two parameters that are essential to estimating the Hubble constant, a unit of measurement that describes the rate at which the universe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

PHYSICS NEWS
Team Powers On AA-2 Orion Module, Preps for Flight Test Simulation

A Two-Dimensional Space Program

Seeking 72-hour Space Environment Forecasts with Updates on the Hour

First space tourist flights could come in 2019

PHYSICS NEWS
Latest Blue Origin Launch Tests Technologies of Interest to Space Exploration

Roscosmos' Research Center's Staff Suspected of Leaking Data Abroad

Pentagon Requests Funds for First Offensive Hypersonic Weapons

Hot firing proves solid rocket motor for Ariane 6 and Vega-C

PHYSICS NEWS
'Storm Chasers' on Mars Searching for Dusty Secrets

Martian Atmosphere Behaves as One

Undergrad Mines Data from Curiosity Rover in Search for Life

Name Europe's robot to roam and search for life on Mars

PHYSICS NEWS
China developing in-orbit satellite transport vehicle

PRSS-1 Satellite in Good Condition

China readying for space station era: Yang Liwei

China launches new space science program

PHYSICS NEWS
Space, not Brexit, is final frontier for Scottish outpost

Billion Pound export campaign to fuel UK space industry

mu Space confirms payload on Blue Origin's upcoming New Shepard flight

New satellite constellations will soon fill the sky

PHYSICS NEWS
Chemical Gardens in Space

What's your idea to 3D print on the Moon

Why won't Parker Solar Probe melt

Future electronic components to be printed like newspapers

PHYSICS NEWS
X-ray Data May Be First Evidence of a Star Devouring a Planet

Origami-inspired device helps marine biologists study aliens

Glowing bacteria on deep-sea fish shed light on evolution, 'third type' of symbiosis

Finding a Planet with a 10-Year Orbit in a Few Months

PHYSICS NEWS
Dozen new Jupiter moons declared

The True Colors of Pluto and Charon

NASA Juno data indicate another possible volcano on Jupiter moon Io

First Global Maps of Pluto and Charon from New Horizons Published









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.