![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Vienna, Austria (SPX) Sep 25, 2018
It was one of the crucial experiments in quantum physics: when light falls on certain materials, electrons are released from the surface. Albert Einstein was the first to explain this phenomenon in 1905, when he spoke of "light quanta" - the smallest units of light that we call photons today. In tiny fractions of a second, an electron of the material absorbs a photon, "jumps" into another state and leaves the surface. This "photoelectric effect" is so fast that until now it has mostly been regarded as instantaneous - as a sudden change of state, from one moment to the next. However, new measurement methods are so precise that it has now become possible to observe such a process and to measure its duration precisely. A team from the Vienna University of Technology, together with research groups from Garching, Munich and Berlin, determined the duration of the photoelectric effect at a tungsten surface. The results were published in the journal Nature.
Measuring on an attosecond scale "With the help of ultra-short laser pulses, it has been possible in recent years to gain for the first time insight into the timing of such effects," explains Prof. Joachim Burgdorfer from the Institute for Theoretical Physics of the Vienna University of Technology. "Together with our colleagues from Germany, for example, we were able to determine the time interval between different quantum jumps and show that different quantum jumps take different amounts of time." However, until now it was only possible to determine time differences, but not the absolute duration, because it is very difficult to find a "clock", which begins to tick precisely at the beginning of the quantum jump. This is exactly what has become possible through the combination of several experiments, computer simulations and theoretical calculations.
Three atomic clocks The helium atoms were then used as a reference clock. In a second experiment, the photoemission of helium and iodine was compared, thus calibrating the "iodine clock". Finally, in the third and final step, it was possible to use the iodine atoms to study the photoemission of electrons from a tungsten surface - the effect, the team wanted to measure. The iodine atoms were deposited on a tungsten surface, which was then hit with ultrashort laser pulses. Now the iodine atoms served as a reference clock, with which the photoemission from the tungsten surface could be measured. An ultrashort laser pulse is used as the starting signal with which the process begins. The electrons are released from their atoms and "jump" into a different quantum state, in which they can reach the tungsten surface and leave. "In tungsten, the duration of this process can be studied particularly well because the interface of the material can be defined very precisely there," explains Prof. Florian Libisch. "The tungsten surface is an excellent finish line for electron-time measurement." The duration of the photoemission process depends on the initial state of the electrons. It ranges from 100 attoseconds for electrons from the inner shells of the tungsten atoms to 45 attoseconds for conduction band electrons, which on average pass the finish line faster. The measurements were carried out at the Max Planck Institute for Quantum Optics in Garching (Germany). Florian Libisch, Christoph Lemell and Joachim Burgdorfer from the Vienna University of Technology were responsible for the theoretical work and computer simulations. But, of course, the goal of the research project is not just measuring the duration of a quantum effect. "It is an exciting field of research that provides remarkable new insights - for example into surface physics, and into electron transport processes inside materials," says Joachim Burgdorfer. "It gives us the opportunity to study important physical processes with an accuracy that would have been inconceivable a few years ago."
![]() ![]() Searching for errors in the quantum world Zurich, Switzerland (SPX) Sep 21, 2018 There is likely no other scientific theory that is as well supported as quantum mechanics. For nearly 100 years now, it has repeatedly been confirmed with highly precise experiments, yet physicists still aren't entirely happy. Although quantum mechanics describes events at the microscopic level very accurately, it comes up against its limits with larger objects - especially objects for which the force of gravity plays a role. Quantum mechanics can't describe the behaviour of planets, for instance, ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |