. 24/7 Space News .
STELLAR CHEMISTRY
How light steers electrons in metals
by Staff Writers
Zurich, Switzerland (SPX) Aug 27, 2019

This is an illustration of the setup and the interaction of a short laser pulse (red oscillating line) with the lattice of titanium atoms (centre, lower half of figure). The red and blue structures represent the redistribution of the electron density in the vicinity of a titanium atom. A close-up of this change in density is shown on the bottom right.

The distribution of electrons in transition metals, which represent a large part of the periodic table of chemical elements, is responsible for many of their interesting properties used in applications. The magnetic properties of some of the members of this group of materials are, for example, exploited for data storage, whereas others exhibit excellent electrical conductivity.

Transition metals also have a decisive role for novel materials with more exotic behaviour that results from strong interactions between the electrons. Such materials are promising candidates for a wide range of future applications.

In their experiment, whose results they report in a paper published in Nature Physics, Mikhail Volkov and colleagues in the Ultrafast Laser Physics group of Prof. Ursula Keller exposed thin foils of the transition metals titanium and zirconium to short laser pulses.

They observed the redistribution of the electrons by recording the resulting changes in optical properties of the metals in the extreme ultraviolet (XUV) domain. In order to be able to follow the induced changes with sufficient temporal resolution, XUV pulses with a duration of only few hundred attoseconds (10^-18 s) were employed in the measurement.

By comparing the experimental results with theoretical models, developed by the group of Prof. Angel Rubio at the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, the researchers established that the change unfolding in less than a femtosecond (10^-15 s) is due to a modification of the electron localization in the vicinity of the metal atoms.

The theory also predicts that in transition metals with more strongly filled outer electron shells an opposite motion - that is, a delocalization of the electrons - is to be expected.

Ultrafast control of material properties
The electron distribution defines the microscopic electric fields inside a material, which do not only hold a solid together but also to a large extent determine its macroscopic properties. By changing the distribution of electrons, one can thus steer the characteristics of a material as well.

The experiment of Volkov et al. demonstrates that this is possible on time scales that are considerably shorter than the oscillation cycle of visible light (around two femtoseconds). Even more important is the finding that the time scales are much shorter than the so-called thermalization time, which is the time within which the electrons would wash out the effects of an external control of the electron distribution through collisions between themselves and with the crystal lattice.

Initial surprise
Initially, it came as a surprise that the laser pulse would lead to an increased electron localization in titanium and zirconium. A general trend in nature is that if bound electrons are provided with more energy, they will become less localized.

The theoretical analysis, which supports the experimental observations, showed that the increased localization of the electron density is a net effect resulting from the stronger filling of the characteristic partially filled d-orbitals of the transition-metal atoms. For transition metals that have d-orbitals which are already more than half filled (that is, elements more towards the right in the periodic table), the net effect is to the opposite and corresponds to a delocalization of the electronic density.

Towards faster electronic components
While the result now reported is of fundamental nature, the experiments demonstrate the possibility of a very fast modification of material properties. Such modulations are used in electronics and opto-electronics for the processing of electronic signals or the transmission of data.

While present components process signal streams with frequencies in the gigahertz (10^9 Hz) range, the results of Volkov and co-workers indicate the possibility of signal processing at petahertz frequencies (10^15 Hz). These rather fundamental findings might therefore inform the development of the next generations of ever-faster components, and through this indirectly find their way into our daily life.

Research paper


Related Links
ETH Zurich Department of Physics
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Unique electrical properties in quantum materials can be controlled using light
Philadelphia PA (SPX) Aug 19, 2019
Insights from quantum physics have allowed engineers to incorporate components used in circuit boards, optical fibers, and control systems in new applications ranging from smartphones to advanced microprocessors. But, even with significant progress made in recent years, researchers are still looking for new and better ways to control the uniquely powerful electronic properties of quantum materials. A new study from Penn researchers found that Weyl semimetals, a class of quantum materials, have bul ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
France's 42: start-up IT school tears up the rule book

NASA astronauts to install docking adapter on ISS during next EVA

Japan steps in to supply key component to Russia's space program

India orders Russian equipment for first manned space mission

STELLAR CHEMISTRY
SNC selects ULA for Dream Chaser launches

Hall thrusters will enable longer space missions

China launches 3 satellites wth Jielong-1 rocket

Secret Russia weapon project: gamechanger or PR stunt?

STELLAR CHEMISTRY
Roscosmos postpones joint ESA ExoMars mission after failed parachute tests

All instruments onboard Rosalind Franklin rover

Robotic toolkit added to NASA's Mars 2020 Rover

Ancient Mars was warm with occasional rain, turning cold

STELLAR CHEMISTRY
China's newly launched communication satellite suffers abnormality

China launches first private rocket capable of carrying satellites

Chinese scientists say goodbye to Tiangong-2

China's space lab Tiangong 2 destroyed in controlled fall to earth

STELLAR CHEMISTRY
ThinKom Solutions Unveils New Multi-Beam Reconfigurable Phased-Array Gateway Solution for Next-Generation Satellites

Embry-Riddle plans expansion of its Research Park through partnership with Space Square

OneWeb secures global spectrum further enabling global connectivity services

Companies partner to offer a complete solution for space missions as a service

STELLAR CHEMISTRY
In praise of the big pixel: Gaming is having a retro moment

Rare earths are contested ground between US and China

Ecuador city recycling plastic bottles for bus tickets

Data rate increase on the International Space Station supports future exploration

STELLAR CHEMISTRY
Study: NASA data shows Earth-sized exoplanet lacks atmosphere

A rare look at the surface of a rocky exoplanet

New "Gold Open Access" Planetary Science Journal Launched

Does ET exist ponders UVA astronomer

STELLAR CHEMISTRY
Young Jupiter was smacked head-on by massive newborn planet

Mission to Jupiter's icy moon confirmed

Giant Impact Disrupted Jupiter's Core

Young Jupiter Was Smacked Head-On by Massive Newborn Planet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.