. | . |
How do atoms vibrate in graphene nanostructures? by Staff Writers Vienna, Austria (SPX) Aug 13, 2019
In order to understand advanced materials like graphene nanostructures and optimize them for devices in nano-, opto- and quantum-technology it is crucial to understand how phonons - the vibration of atoms in solids - influence the materials' properties. Researchers from the University of Vienna, the Advanced Institute of Science and Technology in Japan, the company JEOL and La Sapienza University in Rome have developed a method capable to measure all phonons existing in a nanostructured material. This is a breakthrough in the analysis of nanoscale functional materials and devices. With this pilot experiment using graphene nanostructures these researchers have shown the uniqueness of their approach, which will be published in the latest issue of Nature. Important thermal, mechanical, optoelectronic and transport characteristics of materials are ruled by phonons: the propagating atomic vibrational waves. It is then inferable that the determination of such extended atomic vibrations is crucial for the optimization of nanoelectronic devices. The current available techniques use optical methods as well as inelastic electron-, x-ray- and neutron scattering. Despite its scientific importance in the last decade, none of these methods has been able to determine all phonons of a freestanding monolayer of two dimensional (2D) materials such as graphene and their local variations within a graphene nanoribbon, which are in turn used as active elements in nano- and optoelectronics.
The new limits of nanospectroscopy In this way they could for the first time determine all vibrational modes of freestanding graphene as well as the local extension of different vibrational modes in a graphene nanoribbon. This new method, which they called "large q mapping" opens entirely new possibilities to determine the spatial and momentum extension of phonons in all nanostructured as well as two dimensional advanced materials. These experiments push the limits of nanospectroscopy approaching the limits of Heisenbergs uncertainty principle and demonstrates new possibilities to study local vibration modes at the nanometer scale down to individual monolayers.
New electron nanospectrometer as "table top" synchrotron This study of "High q-Mapping Of Vibrations" in the electron microscope opens a new pathway of nanospectroscopy of all materials combining spatial and momentum resolved measurements. This has been the biggest challenge regarding the combination of microscopy and spectroscopy, since the spatial and momentum resolutions are compensated due to the limit of Heisenbergs uncertainty principle. "We believe that our methodology will boost vast research in material science and will push high resolution electron spectroscopy in electron microscopy to the next level, to be envisaged as a true table top synchrotron", says Thomas Pichler from the University of Vienna.
Research Report: "Position and momentum mapping of vibrations in graphene nanostructures"
Next-gen membranes for carbon capture Lausanne, Switzerland (SPX) Jul 31, 2019 A major greenhouse gas, CO2 produced from burning fossil fuels is still mostly released into the atmosphere, adding to the burden of global warming. One way to cut down on it is through a carbon capture: a chemical technique that removes CO2 out of emissions ("postcombustion"), preventing it from entering the atmosphere. The captured CO2 can then be either recycled or stored away in in gas or liquid form, a process known as sequestration. Carbon capture can be done using so-called "high-perf ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |