24/7 Space News
TIME AND SPACE
How bright is the universe's glow? Study offers best measurement yet
illustration only
How bright is the universe's glow? Study offers best measurement yet
by Daniel Strain for UCB News
Boulder CO (SPX) Sep 05, 2024

Scientists have traveled to the edges of the solar system, virtually, at least, to capture the most accurate measurements to date of the faint glow that permeates the universe-a phenomenon known as the cosmic optical background.

The new study, published Aug. 28 in The Astrophysical Journal, draws on observations from NASA's New Horizons spacecraft, which whizzed past Pluto in 2015 and is now nearly 5.5 billion miles from Earth. The research seeks to answer a deceptively simple question, said co-author Michael Shull, an astrophysicist at the University of Colorado Boulder.

"Is the sky really dark?" said Shull, professor emeritus in the Department of Astrophysical and Planetary Sciences.

Space may look black to human eyes, but scientists believe that it's not completely dark. Since the dawn of the cosmos, trillions of galaxies containing countless stars have formed and died, leaving behind an imperceptibly faint light. Think of it as the night light in space.

Shull and the team, led by Marc Postman at the Space Telescope Science Institute in Baltimore, calculated just how bright that glow is. Their findings suggest that the cosmic optical background is roughly 100 billion times fainter than the sunlight that reaches Earth's surface-far too faint for humans to see with the naked eye.

The results could help scientists shine a light on the history of the universe since the Big Bang.

"We're kind of like cosmic accountants, adding up every source of light we can account for in the universe," Shull said.

Into the dark
It's a type of number crunching that has captured the imagination of scientists for nearly 50 years, he added.

Shull explained that, after decades of research, astrophysicists think they have a pretty good idea of how the cosmos evolved. The first galaxies formed during an epoch known as the Cosmic Dawn several hundred million years after the Big Bang. The starlight from galaxies in the distant universe reached its brightest point about 10 billion years ago and has been dimming ever since.

Precise measurements of the cosmic optical background could help scientists confirm whether this picture of the cosmos makes sense-or if there are mysterious, as-of-yet-undiscovered objects casting light into space.

Taking those kinds of measurements, however, isn't easy, especially not from Earth.

Earth's neighborhood is teeming with tiny grains of dust and other debris. Sunlight glints off this mess, washing out any signals that might be coming from the cosmic optical background.

"A metaphor I use is if you want to see the stars, you need to get out of Denver," Shull said. "You have to go way out, right to the northeast corner of Colorado where all you have ahead of you are South Dakota and Nebraska."

New Horizons has given scientists a once-in-a-lifetime opportunity to do something similar in space.

Cosmic accounting
The mission has uniquely Colorado origins. Alan Stern, who studied as a graduate student at CU Boulder under Shull and former Senior Research Associate Jack Brandt, leads the New Horizons mission. He's currently based at the Southwest Research Institute in Boulder, Colorado. The spacecraft also carries the Student Dust Counter, an instrument designed and built by students at CU Boulder's Laboratory for Atmospheric and Space Physics (LASP).

Over the course of several weeks in summer 2023, the researchers pointed New Horizons' Long Range Reconnaissance Imager (LORRI) at 25 patches of sky.

Even at the edge of the solar system, the team still had a lot of extra light to contend with. The Milky Way Galaxy, for example, sits within a halo that, like our solar system, gathers dust.

"You can't get away from dust," Shull said. "It's everywhere."

He and his colleagues estimated how much light that halo could generate, then subtracted it from what they were viewing with LORRI. After getting rid of additional sources of light, the team was left with the cosmic optical background.

In scientific terms, that background amounts to about 11 nanowatts per square meter per steradian. (A steradian is a patch of sky with a width about 130 times the diameter of the moon).

Shull said that this value lines up well with how many galaxies scientists believe should have formed since the Big Bang. Put differently, there don't seem to be any strange objects, such as exotic kinds of particles, out there in space producing a lot of light. But the researchers can't rule out such anomalies completely.

The team's measurements are likely to be the best estimates of the universe's glow for a long time. New Horizons is using its remaining fuel supplies to pursue other scientific priorities, and no other missions are currently heading toward those cold and dark corners of space.

"If they put a camera on a future mission, and we all wait a couple of decades for it to get out there, we could see a more exact measurement," Shull said.

Research Report:New Synoptic Observations of the Cosmic Optical Background with New Horizons

Related Links
New Horizons
Understanding Time and Space

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
Dark matter could have helped make supermassive black holes in the early universe
Los Angeles CA (SPX) Sep 01, 2024
It takes a long time for supermassive black holes, like the one at the center of our Milky Way galaxy, to form. Typically, the birth of a black hole requires a giant star with the mass of at least 50 of our suns to burn out - a process that can take a billion years - and its core to collapse in on itself. Even so, at only about 10 solar masses, the resulting black hole is a far cry from the 4 million-solar-masses black hole, Sagittarius A', found in our Milky Way galaxy, or the billion-solar-mass ... read more

TIME AND SPACE
NASA reviews progress of ACS3 solar sail system in orbit

Beyond Gravity: Precise in-orbit positioning of Europe's new environmental satellite

What's it Like to Spacewalk?

Spacecraft flies closer to Mercury than planned after thruster glitch

TIME AND SPACE
Benchmark awarded Air Force Research Lab contract to scale ascent-fueled thrusters

Rocket Lab confirms launch date for second Kineis IoT constellation mission

S. Korea space transport ambitions hopes to challenge SpaceX

Sierra Space completes acoustic testing for Shooting Star cargo module at KSC

TIME AND SPACE
Why the Martian polar caps show significant differences

Scientists demonstrate producing fiber materials from simulated Martian soil

China targets Mars sample-return mission by 2028

Hubble and MAVEN collaborate to uncover Mars' water loss

TIME AND SPACE
China launches Yaogan 43B remote-sensing satellites from Xichang

Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

Shenzhou XVIII Crew Conducts Emergency Drill on Tiangong Space Station

TIME AND SPACE
ATLAS Space Operations secures $15M in investment round led by NewSpace Capital

Iridium introduces advanced Iridium Certus GMDSS for enhanced maritime safety

T2S Solutions expands spaceflight capabilities with Flexitech Aerospace acquisition

AST SpaceMobile confirms upcoming satellite launch and financial update

TIME AND SPACE
Old satellite to burn up over Pacific in 'targeted' re-entry first

Bright Ascension and ERETS Forge Partnership to Boost Global Space Debris Solutions

AiRANACULUS Expands NASA Contract for Innovative Space Communications Technology

Poland signs $285 mln air radar deal with Spain's Indra

TIME AND SPACE
Iron winds detected on ultra-hot exoplanet WASP-76 b

3 Questions: Evidence for planetary formation through gravitational instability

NASA's carbon nanotube technology aids search for life on exoplanets

Researchers unveil unusual orbital behavior in exoplanet TOI-1408c

TIME AND SPACE
Outer Solar System may hold far more objects than previously thought

Juice trajectory reset with historic Lunar-Earth flyby

NASA's Juno Mission Maps Jupiter's Radiation Using Danish Technology

Juice captures striking image of Moon during flyby

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.