. | . |
How big does your quantum computer need to be? by Staff Writers Washington DC (SPX) Jan 26, 2022
Quantum computers are expected to be disruptive and potentially impact many industry sectors. So researchers in the United Kingdom and the Netherlands decided to explore two very different quantum problems: breaking the encryption of Bitcoin (a digital currency) and simulating the molecule responsible for biological nitrogen fixation. In AVS Quantum Science, from AIP Publishing, the researchers describe a tool they created to determine how big a quantum computer needs to be to solve problems like these and how long it will take. "The majority of existing work within this realm focuses on a particular hardware platform, superconducting devices, like those IBM and Google are working toward," said Mark Webber, of the University of Sussex. "Different hardware platforms will vary greatly on key hardware specifications, such as the rate of operations and the quality of control on the qubits (quantum bits)." Many of the most promising quantum advantage use cases will require an error-corrected quantum computer. Error correction enables running longer algorithms by compensating for inherent errors inside the quantum computer, but it comes at the cost of more physical qubits. Pulling nitrogen out of the air to make ammonia for fertilizers is extremely energy-intensive, and improvements to the process could impact both world food scarcity and the climate crisis. Simulation of relevant molecules is currently beyond the abilities of even the world's fastest supercomputers but should be within the reach of next-gen quantum computers. "Our tool automates the calculation of the error-correction overhead as a function of key hardware specifications," Webber said. "To make the quantum algorithm run faster, we can perform more operations in parallel by adding more physical qubits. We introduce extra qubits as needed to reach the desired runtime, which is critically dependent on the rate of operations at the physical hardware level." Most quantum computing hardware platforms are limited, because only qubits right next to each other can interact directly. In other platforms, such as some trapped ion designs, the qubits are not in fixed positions and can instead be physically moved around - meaning each qubit can interact directly with a wide set of other qubits. "We explored how to best take advantage of this ability to connect distant qubits, with the aim of solving problems in less time with fewer qubits," said Webber. "We must continue to tailor the error-correction strategies to exploit the strengths of the underlying hardware, which may allow us to solve highly impactful problems with a smaller-size quantum computer than had previously been assumed." Quantum computers are exponentially more powerful at breaking many encryption techniques than classical computers. The world uses RSA encryption for most of its secure communication. RSA encryption and the one Bitcoin uses (elliptic curve digital signature algorithm) will one day be vulnerable to a quantum computing attack, but today, even the largest supercomputer could never pose a serious threat. The researchers estimated the size a quantum computer needs to be to break the encryption of the Bitcoin network within the small window of time it would actually pose a threat to do so - in between its announcement and integration into the blockchain. The greater the fee paid on the transaction, the shorter this window will be, but it likely ranges from minutes to hours. "State-of-the-art quantum computers today only have 50-100 qubits," said Webber. "Our estimated requirement of 30 [million] to 300 million physical qubits suggests Bitcoin should be considered safe from a quantum attack for now, but devices of this size are generally considered achievable, and future advancements may bring the requirements down further. "The Bitcoin network could perform a 'hard-fork' onto a quantum-secure encryption technique, but this may result in network scaling issues due to an increased memory requirement." The researchers emphasize the rate of improvement of both quantum algorithms and error- correction protocols. "Four years ago, we estimated a trapped ion device would need a billion physical qubits to break RSA encryption, requiring a device with an area of 100-by-100 square meters," said Webber. "Now, with improvements across the board, this could see a dramatic reduction to an area of just 2.5-by-2.5 square meters." A large-scale error-corrected quantum computer should be able to solve important problems classical computers cannot. "Simulating molecules has applications for energy efficiency, batteries, improved catalysts, new materials, and the development of new medicines," said Webber. "Further applications exist across the board - including for finance, big data analysis, fluid flow for airplane designs, and logistical optimizations."
Research Report: "The impact of hardware specifications on reaching quantum advantage in the fault tolerant regime"
Lion will roam above the planet - KP Labs to release their "king of orbit" Gliwice, Poland (SPX) Jan 21, 2022 KP Labs is beginning to work on an expansion of its product portfolio with an on-board computer for small satellites that will streamline and speed up on-orbit data processing, as well as ensure greater hardware reliability in modern satellite missions. This is the third Data Processing Unit (DPU) designed by KP Labs, and the first one suited for use in larger missions. After the introduction of devices tailored for nanosatellite projects, Lion DPU paves a way for the company to enter a completely new s ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |