. 24/7 Space News .
How To Rip And Tear A Fluid

Birefringent visualization of the micellar fluid layer around a diagonally oriented square "cutting tool." A white outline is superimposed on the outer edge of the square. Credit: J. Gladden, A. Belmonte (Penn State)
by Staff Writers
University Park PA (SPX) Jun 05, 2007
In a simple experiment on a mixture of water, surfactant (soap), and an organic salt, two researchers working in the Pritchard Fluid Mechanics Laboratory at Penn State have shown that a rigid object like a knife passes through the mixture at slow speeds as if it were a liquid, but rips it up as if it were a rubbery solid when the knife moves rapidly.

The mixture they study shares properties of many everyday materials -- like toothpaste, saliva, blood, and cell cytoplasm -- which do not fall into the standard textbook cases of solid, liquid, or gas.

Instead, these "viscoelastic" materials can have the viscous behavior of a fluid or the elastic behavior of a solid, depending on the situation.

The results of these experiments, which are published in the current issue of the journal Physical Review Letters and are featured on its cover, provide new insights into how such materials switch over from being solid-like to being liquid-like.

"As a child will swish its finger through an unknown liquid to find out what it is, we built an experiment to pull a cylinder through this viscoelastic material, to learn how it responds," explains Andrew Belmonte, associate professor of mathematics at Penn State and a member of the research team.

Their study revealed experimentally, for the first time, the response of a viscoelastic material to increasingly extreme conditions of flow.

"We found that flow happens at slow speeds, cutting happens at intermediate speeds, and tearing happens at the highest speeds," says Joseph R. Gladden, a co-author of the research paper, who collaborated on the study while he was a postdoctoral scholar at Penn State. The researchers also found that the viscoelastic material heals in the wake of the tear, as a torn solid would not, and recovers completely after several hours.

"Surprisingly, the strength of the material when it acts like a solid is essentially the same as its surface tension as a liquid. This fact reconnects our understanding of these materials between the extremes of flow and fracture," said Belmonte.

Email This Article

Related Links
Pritchard Fluid Mechanics Laboratory
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Quasicrystals: Somewhere Between Order And Disorder
Houston TX (SPX) Jun 04, 2007
Professionally speaking, things in David Damanik's world don't line up - and he can prove it. In new research that's available online and slated for publication in July's issue of the Journal of the American Mathematical Society, Damanik and colleague Serguei Tcheremchantsev offer a key proof in the study of quasicrystals, crystal-like materials whose atoms don't line up in neat, unbroken rows like the atoms found in crystals.







  • Fourteen Space Agencies Sign Joint Exploration Agreement
  • Science Subcommittees Focus On Ensuring Health And Vitality Of NASA Workforce
  • Malaysian Astronauts Head To NASA For Training
  • Amid Turtles And Sharks, Astronauts Train For Lunar Mission

  • The Spirit Of Mars Continues To Astonish
  • European Meeting In Athens Fuels Future Space Exploration Missions To Mars And Moon
  • Mars Science Laboratory Less Than A Year From Assembly And Testing Phase
  • Spirit Continues Soil Analysis

  • Russia Launches Four Satellites Into Orbit For Globalstar
  • Proton-M Carrier With US Telecom Satellite To Lift Off In June
  • Microgravity Enterprises Launches Commercial Payload From New Mexico Spaceport
  • Arianespace Maintains Launch Campaign Pace As Another Ariane 5 GEO Truck Takes Form

  • US Experts Predict Nine Atlantic Hurricanes This Season
  • Space Systems/Loral Awarded NASA Contract For Landsat Data Continuity Mission Accommodation Study
  • Tracking A Hot Spot In The Center Of The Biggest Ocean On Earth
  • MetOp-A Takes Up Service

  • A Goofball Called Pluto
  • First Observation Of A Uranian Mutual Event
  • Continuing Our Jovian Journey
  • Rosetta And New Horizons Watch Jupiter In Joint Campaign

  • University Of Michigan Astronomers Capture The First Image Of Surface Features On A Sun-Like Star
  • Astronomers Map Action In The Cosmic Suburbs
  • FUSE Satellite Catches Collision Of Titans
  • UD Scientists Build An IceTop At The Bottom Of The World

  • A Climate Monitoring Station On The Moon
  • No Plans To Join NASA Lunar Program Says Russian Space Agency
  • Oresme Crater Show Many Signs Of The Early Lunar Heavy Bombardment
  • First China Mission To Moon To Launch By Year End

  • Latest AeroAstro Asset Tracking Satellite Downlink Decoder Ready For Deployment
  • Russian Satellite Navigation Devices On Sale This Year
  • GNSS And ESA Sign Cooperation Agreement For Satellite Navigation Technologies
  • Putin Makes Glonass Navigation System Free For Customers

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement