![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Basel, Switzerland (SPX) Mar 29, 2022
Quantum bits (qubits) are the smallest units of information in a quantum computer. Currently, one of the biggest challenges in developing this kind of powerful computer is scalability. A research group at the University of Basel, working with the IBM Research Laboratory in Ruschlikon, has made a breakthrough in this area. Quantum computers promise unprecedented computing power, but to date prototypes have been based on just a handful of computing units. Exploiting the potential of this new generation of computers requires combining large quantities of qubits. It is a scalability problem which once affected classic computers, as well; in that case it was solved with transistors integrated into silicon chips. The research team led by Dr. Andreas Kuhlmann and Professor Dominik Zumbuhl from the University of Basel has now come up with silicon-based qubits that are very similar in design to classic silicon transistors. The researchers published their findings in the journal Nature Electronics.
Building on classic silicon technology The qubits developed by Kuhlmann's team are based on FinFET architecture and use holes as spin qubits. In contrast with electron spin, hole spin in silicon nanostructures can be directly manipulated with fast electrical signals.
Potential for higher operating temperatures Circumventing this "wiring bottleneck" is one of the main goals of Kuhlmann's research group, and requires measurement and control electronics to be built directly into the cooling unit. "However, integrating these electronics requires qubit operation at temperatures above 1 kelvin, with the cooling power of the cryostats increasing sharply to compensate for the heat dissipation of the control electronics," explains Dr. Leon Camenzind of the Department of Physics at the University of Basel. Doctoral student Simon Geyer, who shares lead authorship of the study with Camenzind, adds, "We have overcome the 4 kelvin-mark with our qubits, reaching the boiling point of liquid helium. Here we can achieve much greater cooling power, which allows for integration of state-of-the-art cryogenic control technology."
Close to industry standards
Research Report: "A hole spin qubit in a fin field-effect transistor above 4 degrees kelvin"
![]() ![]() Making quantum circuits more robust Boston MA (SPX) Mar 29, 2022 Quantum computing continues to advance at a rapid pace, but one challenge that holds the field back is mitigating the noise that plagues quantum machines. This leads to much higher error rates compared to classical computers. This noise is often caused by imperfect control signals, interference from the environment, and unwanted interactions between qubits, which are the building blocks of a quantum computer. Performing computations on a quantum computer involves a "quantum circuit," which is a se ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |