Subscribe free to our newsletters via your
. 24/7 Space News .




TIME AND SPACE
High-Flying Electrons May Provide New Test Of Quantum Theory
by Staff Writers
Washington DC (SPX) May 02, 2008


(a) In a Rydberg atom, an electron (black dot) is far away from the atomic nucleus (red and grey core). (b) Probability map for an electron in a Rydberg atom shows that it has virtually no probability of being near the nucleus in the center. (c) An optical frequency comb for producing ultraprecise colors of light can trigger quantum energy jumps useful for accurately measuring the Rydberg constant. Credit: NIST

Researchers at the National Institute of Standards and Technology (NIST) and Max Planck Institute for Physics in Germany believe they can achieve a significant increase in the accuracy of one of the fundamental constants of nature by boosting an electron to an orbit as far as possible from the atomic nucleus that binds it.

The experiment would not only mean more accurate identifications of elements in everything from stars to environmental pollutants but also could put the modern theory of the atom to the most stringent tests yet.

The physicists' quarry is the Rydberg constant, the quantity that specifies the precise color of light that is emitted when an electron jumps from one energy level to another in an atom. The current value of the Rydberg constant comes from comparing theory and experiment for 23 different kinds of energy jumps in hydrogen and deuterium atoms.

Researchers have experimentally measured the frequencies of light emitted by these atomic transitions (energy jumps) to an accuracy of as high as 14 parts per quadrillion (one followed by 15 zeros), but the value of the Rydberg constant is known only to about 6.6 parts in a trillion-500 times less accurate.

The main hurdle to a more accurate value comes from uncertainties in the size of the atom's nucleus, which can alter the electron's energy levels and therefore modify the frequency of light it emits. Another source of uncertainty comes from the fact that electrons sometimes emit and reabsorb short-lived "virtual photons," a process that also can slightly change the electron's energy level.

To beat these problems, NIST physicist Peter Mohr and his colleagues propose engineering so-called hydrogen-like Rydberg atoms-atomic nuclei stripped of all but a single electron in a high-lying energy level far away from the nucleus.

In such atoms, the electron is so far away from the nucleus that the latter's size is negligible, and the electron would accelerate less in its high-flung orbit, reducing the effects of "virtual photons" it emits. These simplifications allow theoretical uncertainties to be as small as tens of parts in a quintillion (one followed by 18 zeros).

NIST researchers Joseph Tan and colleagues hope to implement this approach experimentally in their Electron Beam Ion Trap Facility. The idea would be to strip an atom of all its electrons, cool it and inject a single electron in a high-flying orbit. Then the researchers would use a sensitive measurement device known as a frequency comb to measure the light absorbed by this Rydberg atom.

The result could be an ultraprecise frequency measurement that would yield an improved value for the Rydberg constant. Such a measurement would be so sensitive that it could reveal anomalies in quantum electrodynamics, the modern theory of the atom.

.


Related Links
National Institute of Standards and Technology (NIST)
Understanding Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TIME AND SPACE
The Physics Of Whipped Cream
Washington DC (SPX) Apr 28, 2008
Let's do a little science experiment. If you have a can of whipped cream in the fridge, go get it out. Spray a generous dollop into a spoon and watch carefully. Notice anything interesting? The whipped cream just did something rather puzzling. First it flowed smoothly out of the nozzle like a liquid would, and then, a moment later, it perched rigidly in the spoon as if it were solid. What made ... read more


TIME AND SPACE
Shanghai's Own Moon Vehicle Passes Test

China Blasts Off First Data Relay Satellite

KAGUYA Captures First Successful Shooting Of A Full Earth-Rise

New NASA Moon Mission Begins Integration Of Science Instruments

TIME AND SPACE
Glaciers Reveal Martian Climate Has Been Recently Active

Andrews Space Wins NASA Exploration Contract

Artificial Intelligence Boosts Science From Mars

New Online Map Reveals Evidence Of The Forces That Once Shaped Mars

TIME AND SPACE
Design Begins On Twin Probes That Will Study Radiation Belts

SKorea's first astronaut in hospital with back pain

NASA Officials Turn To Air Force For Guppy Evaluation

Explorers Flight Launch Set For June

TIME AND SPACE
China Launches New Space Tracking Ship To Serve Shenzhou VII

Three Rocketeers For Shenzhou

China's space development can pose military threat: Japan

Brazil To Deepen Space Cooperation With China

TIME AND SPACE
US Congressional Subcommittee Examines The Status Of The ISS

Expedition 16's Whitson Hands Over Command Of Station

Russia Needs Billions More To Complete It's ISS Segment

NASA Awards Space Station Water Contract To Hamilton Sundstrand

TIME AND SPACE
Zenit Rocket Puts Israeli Satellite Into Orbit

Khrunichev And ILS Announce Quality Initiative

Military And Civilian Telecom Satellites Are Readied For Third Ariane 5 Mission Of 2008

Israeli communications satellite launched

TIME AND SPACE
Exo-Planet Roadmap Advisory Team Appointed By ESA

Plan To Identify Watery Earth-Like Planets Develops

Astronomers Listen To An Exoplanet-Host Star And Find Its Birthplace

New Rocky Planet Found In Constellation Leo

TIME AND SPACE
NASA Ames Partners With m2mi For Small Satellite Development

Graphene-Based Gadgets May Be Just Years Away

Loral Spins A Giant Web In Space As First ICO Bird Comes Alive

COM DEV Launches Advanced Space-Based AIS Validation Nanosatellite




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement