. 24/7 Space News .
SHAKE AND BLOW
Hidden magnitude-8.2 earthquake source of mysterious 2021 global tsunami
by Staff Writers
Pasadena CA (SPX) Feb 09, 2022

South Georgia Island, the largest island along the subduction trench. Credit: European Space Agency (modified Copernicus Sentinel data)

Scientists have uncovered the source of a mysterious 2021 tsunami that sent waves around the globe.

In August 2021, a magnitude 7.5 earthquake hit near the South Sandwich Islands, creating a tsunami that rippled around the globe. The epicenter was 47 kilometers below the Earth's surface - too deep to initiate a tsunami - and the rupture was nearly 400 kilometers long, which should have generated a much larger earthquake.

Seismologists were puzzled and sought to understand what really happened that day in the remote South Atlantic.

A new study revealed the quake wasn't a single event, but five, a series of sub-quakes spread out over several minutes. The third sub-quake was a shallower, slower magnitude 8.2 quake that hit just 15 kilometers below the surface. That unusual, "hidden" earthquake was likely the trigger of the worldwide tsunami.

The study was published in the AGU journal Geophysical Research Letters, which publishes short-format, high-impact papers with implications that span the Earth and space sciences.

Because the South Sandwich Islands earthquake was complex, with multiple sub-quakes, its seismic signal was difficult to interpret, according to lead study author Zhe Jia, a seismologist at the California Institute of Technology. The magnitude 8.2 quake was hidden within the tangle of seismic waves, which interfered with each other over the course of the event. The hidden quake's signal wasn't clear until Jia filtered the waves using a much longer period, up to 500 seconds. Only then did the 200-second-long quake, which Jia said accounted for over 70% of the energy released during the earthquake, become clear.

"The third event is special because it was huge, and it was silent," Jia said. "In the data we normally look at [for earthquake monitoring], it was almost invisible."

Predicting hazards for complex earthquakes can be difficult, as the South Sandwich Islands quake demonstrates. The USGS initially reported the magnitude 7.5 quake and only added the 8.2 event the following day, as the surprise tsunami lapped on shores up to 10,000 kilometers away from its point of origin.

"We need to rethink our way to mitigate earthquake-tsunami hazards. To do that, we need to rapidly and accurately characterize the true size of big earthquakes, as well as their physical processes," Jia said.

Because this type of earthquake can result in unexpected tsunami, it's critical to improve our predictions. "With these complex earthquakes, the earthquake happens and we think, 'Oh, that wasn't so big, we don't have to worry.' And then the tsunami hits and causes a lot of damage," said Judith Hubbard, a geologist at the Earth Observatory of Singapore who was not involved in the study. "This study is a great example of how we can understand how these events work, and how we can detect them faster so we can have more warning in the future."

Sneaky seismic signals
When an earthquake hits, it sends waves of vibration through the Earth. The global network of earthquake monitors uses those seismic waves to pinpoint the time, location, depth and magnitude of an earthquake. Common monitoring often focuses on short- and medium-periods of waves, Jia said, and longer periods can be left out. But even incorporating long periods into monitoring, on its own, isn't enough to catch complex earthquakes with messy seismic signals.

"It's hard to find the second earthquake because it's buried in the first one," Jia said. "It's very seldom complex earthquakes like this are observed. ... And if we don't use the right dataset, we cannot really see what was hidden inside."

A simple earthquake can easily be pinpointed and described, Jia said. But a messy one needs to be carefully broken down into its constituent parts, to find out what unique combination of simpler earthquakes built up the complex one.

Jia and his colleagues developed an algorithm to tease apart the seismic signals during those messy earthquakes. By "decomposing" complex earthquake signals into simpler forms, using waves over different periods (varying from 20 to 500 seconds long), the algorithm can identify the location and properties of different sub-earthquakes. It's akin to someone with perfect pitch hearing five dissonant notes struck at once, yet being able to identify each individual note.

"I think a lot of people are daunted by trying to work on events like this," said Hubbard. "That somebody was willing to really dig into the data to figure it out is really useful."

Both Jia and Hubbard noted a long-term goal is to automate the detection of such complex earthquakes, as we can for simple earthquakes. For the 2021 quake, the tsunami was small by the time it reached shores, and most of the permanent residents of the remote, volcanic islands are penguins. But complex earthquakes can pose significant hazards if they generate larger tsunami or strike in a densely populated region.

Research Report: "The 2021 South Sandwich Island Mw 8.2 earthquake: a slow event sandwiched between regular ruptures"


Related Links
California Institute of Technology Seismological Laboratory
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
New analysis of tsunami deposits paints a clearer picture of Sanriku's past
Sendai, Japan (SPX) Feb 04, 2022
A research group comprising members from Tohoku University, Hokkaido University and the University of Tokyo have developed a high-resolution radiocarbon dating method that can accurately date tsunami deposits, offering a vital window into past disasters and enabling scientists to better understand how frequently tsunamis occur. Tsunami deposits offer scientists important information on tsunamis that struck before records began. They reveal the frequency and size of tsunamis. But sometimes the sedi ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Global patent filings surged to record high in 2021: UN

China joins industrial design IP treaty

Northrop Grumman's 17th Resupply Mission packed with science and technology for ISS

Astronaut hits 300 days in space, on way to break NASA record

SHAKE AND BLOW
NASA Prepares to Join Two Major Parts for Artemis II Core Stage

Increasing production is important for Hypersonics, Defense official says

UCF lands DOD award for advance hypersonic propulsion research

UCF lands new project to study effect of rain on hypersonic travel

SHAKE AND BLOW
Sols 3381-3382: Whence We Came

NASA selects developer for rocket to retrieve first samples from Mars

NASA awards contract for first rocket to launch from another planet

Lockheed Martin wins NASA contract to bring Mars samples back to Earth

SHAKE AND BLOW
China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

China to improve space debris monitoring: white paper

SHAKE AND BLOW
Protecting dark and quiet skies from satellite constellation interference

Solar storm knocks out 40 SpaceX Starlink satellites

Sidus Space announces deal with Red Canyon Software to support LizzieSat Constellation

New Center for Satellite Constellation Interference

SHAKE AND BLOW
Taiwan eases nuclear-accident food import ban from Japan

Coca-Cola says 25% of packaging will be reusable by 2030

Rare earth elements await in waste

New plant-derived composite is tough as bone and hard as aluminum

SHAKE AND BLOW
Giant sponge gardens discovered on seamounts in the Arctic deep sea

A targeted, reliable, long-lasting kill switch for genetically engineered microbe

Animal genomes: Chromosomes almost unchanged for over 600 million years

Puffy planets lose atmospheres, become Super Earths

SHAKE AND BLOW
Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.