|
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
|
![]() |
![]() by Staff Writers Hannover, Germany (SPX) Sep 15, 2015
Gamma-ray pulsars are remnants of explosions that end the lives of massive stars. They are highly-magnetized and rapidly rotating compact neutron stars. Like a cosmic lighthouse they emit gamma-ray photons in a characteristic pattern that repeats with every rotation. However, since only very few gamma-ray photons are detected, finding this hidden rhythm in the arrival times of the photons is computationally challenging. Now, an international team led by researchers at the Max Planck Institute for Gravitational Physics (Albert Einstein Institute, AEI) in Hannover, Germany, has discovered a new gamma-ray pulsar hidden in plain sight in data from the Fermi Gamma-ray Space Telescope. The improved, adaptive data analysis methods and the computing power from the distributed volunteer computing project Einstein@Home were key to their success.
Searching for an Elusive Gamma-ray Pulsar The tricky part was to show that the gamma-ray photons carry the imprint of the pulsar's rotation and arrive according to that hidden rhythm. Many had tried that before, but to no avail," says Holger Pletsch, leader of an independent research group at the AEI and co-author of the paper that now appeared in The Astrophysical Journal Letters. The Fermi-LAT observations cover a total time of more than six years now. For every single gamma-ray photon received from the pulsar, the AEI scientists had to identify during which of the up to billions of pulsar rotations it was emitted. Since a priori there is very little knowledge about the pulsar's rhythm and its other properties, vast parameter spaces have to be searched very finely - otherwise the hidden signal would be missed. "It's a lot like searching the proverbial needle in haystack, except that beforehand we don't even know what our needle exactly looks like," says Colin Clark, PhD student in Pletsch's group and lead author of the paper.
An Adaptive Search as Crucial Ingredient "We therefore have to search over a grid in the sky around the Fermi-LAT catalogue position. To make sure we do not miss the pulsar, we included a safety margin in our search grid," explains Clark. "More importantly, we also made our search algorithm adaptive - even if the source was at the edge of the analyzed sky patch, the search algorithm could 'walk away' and still find the pulsar." It turned out that the new adaptive search method was exactly what was needed to get to the bottom of the riddle of PSR J1906+0722. Its actual sky position is outside the conservatively large region covered by the sky grid, which is why earlier (non-adaptive) searches did not find it. The new methods are also more efficient: They can analyze larger parameter spaces at the same computing costs.
Einstein@Home Contributes Computing Power
Supernova Remnant and Star Quake "From our follow-up analysis it appears that the nearby gamma-ray source could be the shock front of a different supernova remnant slamming into a neighboring molecular cloud and generating gamma-rays in the process," explains Clark. Upon closer inspection, it also became apparent that the pulsar had suffered a so-called glitch in the year 2009. After the glitch, the pulsar suddenly spun more rapidly than previously and is still settling back to its old rotation rate. This sudden shift also affected the gamma-ray photon arrival times, and complicated the data analysis. Pulsar glitches are thought to be linked to quakes in the neutron star's crust and their study might provide insights into their interior structure.
Finding otherwise Invisible Pulsars with "Blind" Searches "This shows the importance of these 'blind' pulsar searches in Fermi-LAT gamma-ray data. Only with these searches that do not require exact prior knowledge will we be able to discover otherwise invisible pulsars. This is an important contribution towards a more complete view of the Galactic pulsar population," says Pletsch. The combination of new data analysis methods developed at the AEI and the improved 'Pass 8' data recently released by the Fermi-LAT collaboration has made these blind searches more sensitive than ever before.
Related Links Max Planck Institute for Gravitational Physics Stellar Chemistry, The Universe And All Within It
|
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |