. 24/7 Space News .
STELLAR CHEMISTRY
Hey Siri: How Much Does This Galaxy Cluster Weigh
by Amy Pavlak Laird for CMU News
Pittsburgh PA (SPX) Jul 21, 2022

File image of the Coma Galaxy Cluster.

It's been nearly a century since astronomer Fritz Zwicky first calculated the mass of the Coma Cluster, a dense collection of almost 1,000 galaxies located in the nearby universe. But estimating the mass of something so huge and dense, not to mention 320 million light-years away, has its share of problems - then and now. Zwicky's initial measurements, and the many made since, are plagued by sources of error that bias the mass higher or lower.

Now, using tools from machine learning, a team led by Carnegie Mellon University physicists has developed a deep-learning method that accurately estimates the mass of the Coma Cluster and effectively mitigates the sources of error.

"People have made mass estimates of the Coma Cluster for many, many years. But by showing that our machine-learning methods are consistent with these previous mass estimates, we are building trust in these new, very powerful methods that are hot in the field of cosmology right now," said Matthew Ho, a fifth-year graduate student in the Department of Physics' McWilliams Center for Cosmology and a member of Carnegie Mellon's NSF AI Planning Institute for Physics of the Future.

Machine-learning methods are used successfully in a variety of fields to find patterns in complex data, but they have only gained a foothold in cosmology research in the last decade. For some researchers in the field, these methods come with a major concern: Since it is difficult to understand the inner workings of a complex machine-learning model, can they be trusted to do what they are designed to do? Ho and his colleagues set out to address these reservations with their latest research, published in Nature Astronomy.

To calculate the mass of the Coma Cluster, Zwicky and others used a dynamical mass measurement, in which they studied the motion or velocity of objects orbiting in and around the cluster and then used their understanding of gravity to infer the cluster's mass. But this measurement is susceptible to a variety of errors. Galaxy clusters exist as nodes in a huge web of matter distributed throughout the universe, and they are constantly colliding and merging with each other, which distorts the velocity profile of the constituent galaxies.

And because astronomers are observing the cluster from a great distance, there are a lot of other things in between that can look and act like they are part of the galaxy cluster, which can bias the mass measurement. Recent research has made progress toward quantifying and accounting for the effect of these errors, but machine-learning-based methods offer an innovative data-driven approach, according to Ho.

"Our deep-learning method learns from real data what are useful measurements and what are not," Ho said, adding that their method eliminates errors from interloping galaxies (selection effects) and accounts for various galaxy shapes (physical effects). "The usage of these data-driven methods makes our predictions better and automated."

"One of the major shortcomings with standard machine learning approaches is that they usually yield results without any uncertainties," added Associate Professor of Physics Hy Trac, Ho's adviser. "Our method includes robust Bayesian statistics, which allow us to quantify the uncertainty in our results."

Ho and his colleagues developed their novel method by customizing a well-known machine-learning tool called a convolutional neural network, which is a type of deep-learning algorithm used in image recognition. The researchers trained their model by feeding it data from cosmological simulations of the universe. The model learned by looking at the observable characteristics of thousands of galaxy clusters, whose mass is already known.

After in-depth analysis of the model's handling of the simulation data, Ho applied it to a real system - the Coma Cluster - whose true mass is not known. Ho's method calculated a mass estimate that is consistent with most of the mass estimates made since the 1980s. This marks the first time this specific machine-learning methodology has been applied to an observational system.

"To build reliability of machine-learning models, it's important to validate the model's predictions on well-studied systems, like Coma," Ho said. "We are currently undertaking a more rigorous, extensive check of our method. The promising results are a strong step toward applying our method on new, unstudied data."

Models such as these are going to be critical moving forward, especially when large-scale spectroscopic surveys, such as the Dark Energy Spectroscopic Instrument, the Vera C. Rubin Observatory and Euclid, start releasing the vast amounts of data they are collecting of the sky.

"Soon we're going to have a petabyte-scale data flow," Ho explained. "That's huge. It's impossible for humans to parse that by hand. As we work on building models that can be robust estimators of things like mass while mitigating sources of error, another important aspect is that they need to be computationally efficient if we're going to process this huge data flow from these new surveys. And that is exactly what we are trying to address - using machine learning to improve our analyses and make them faster."

This work is supported by NSF AI Institute: Physics of the Future, NSF PHY-2020295, and the McWilliams-PSC Seed Grant Program. The computing resources necessary to complete this analysis were provided by the Pittsburgh Supercomputing Center. The CosmoSim database used in this paper is a service by the Leibniz-Institute for Astrophysics Potsdam (AIP).

Research Report:The dynamical mass of the Coma cluster from deep learning


Related Links
McWilliams Center for Cosmology
Hubble Heritage
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
From nuclei to neutron stars
Newport News VA (SPX) Jul 13, 2022
How big is an atomic nucleus? How does the size of a nucleus relate to a neutron star? These tantalizing questions in physics were explored in a pair of experiments at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility. Now, a 2021 doctoral dissertation describing those experiments has just earned Devi Lal Adhikari the prestigious annual Jefferson Science Associates (JSA) Thesis Prize. Currently a postdoctoral associate at the Virginia Polytechnic Institute and St ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Dragon docks at ISS to deliver various science payloads

US renews space flights with Russia in rare cooperation

NASA Highlights Climate Research on Cargo Launch, Sets Coverage

Short space trips for paying passengers on the way

STELLAR CHEMISTRY
Australian rocketry team regains sky wings with triple win at Spaceport America Cup

Dawn Aerospace awarded EU contract for hydrazine-replacement program

SpaceX launches 53 Starlink satellites to orbit after Dragon docks with ISS

NASA, Northrop Grumman to test fire future Artemis booster motor

STELLAR CHEMISTRY
A Rover-Sized Boulder Sols 3532-3533

Futuristic Space Habitat lands at Institut Auf Dem Rosenberg

Unequal siblings: Ius and Tithonium Chasma

When Mars throws you a curveball Sol 3539-3540

STELLAR CHEMISTRY
Third Tianlian II-series satellite launched

China's newest research lab prepares launch to space

China prepares to launch Wentian lab module

Shenzhou-14 Taikonauts conduct in-orbit science experiments, prepare for space walks

STELLAR CHEMISTRY
Ukrainian Space Startups

NASA and Houston's Ion Partner to Create Opportunities for Startup Community

Tech firms unveil plan for 'space-based' 5G network

ESA astronaut selection in the final stages

STELLAR CHEMISTRY
Swarm dodges collision during climb to escape Sun's wrath

NASA seeks public's designs to throw shade in space

Laser Terminal Bound for ISS arrives at Goddard for testing

A programming language for hardware accelerators

STELLAR CHEMISTRY
A New Method to Detect Exoplanets

Rocking shadows in protoplanetary discs

To search for alien life, astronomers will look for clues in the atmospheres of distant planets

Webb begins hunt for the first stars and habitable worlds

STELLAR CHEMISTRY
You can help scientists study the atmosphere on Jupiter

SwRI scientists identify a possible source for Charon's red cap

NASA's Europa Clipper Mission Completes Main Body of the Spacecraft

Gemini North Telescope Helps Explain Why Uranus and Neptune Are Different Colors









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.