. | . |
Heterometallic copper-aluminum superatom discovered by Staff Writers Munich, Germany (SPX) Sep 27, 2018
On the outside, the cluster made of 55 copper and aluminum atoms looks like a crystal, but chemically it has the properties of an atom. The heterometallic superatom which chemists of the Technical University of Munich (TUM) have created provides the prerequisites for developing new, more cost-effective catalysts. Chemistry can be expensive. For example, platinum is used to clean exhaust gases. This precious metal acts as a catalyst which speeds up chemical reactions. Without catalysts, it would not be possible to carry out a large number of processes in the chemical industry. "Many groups of researchers are experimenting with new material compounds made of lower-cost base metals such as iron, copper, or aluminum. However, so far nobody has been able to predict whether, how, and why these catalysts react", explains Roland Fischer, Professor for Inorganic and Metal-Organic Chemistry at the TUM. "Our goal was to bridge this gap and to create the basis for understanding a new generation of catalysts."
Bottom-up approach yields results Combining two metals at the atomic level requires no small amount of know-how and finesse: Within a protective argon atmosphere, the chemists combined the metal atoms which were bound to organic compounds in a test tube, to which they then added a solvent. "Naturally, we hoped that the copper and aluminum atoms would separate from the organic compounds and form a cluster together. But whether they would actually do that and what the result would be was entirely unclear", remembers Fischer.
The secret of the crystals Crystallographers call such shapes icosahedrons Additional experiments showed that chemically, the crystals react like an individual copper atom and are also paramagnetic, which means that they are attracted by a magnetic field. An explanation for the extraordinary properties of the metal clusters was provided by Prof. Jean-Yves Saillard from the French university in Rennes: According to him, 43 and 12 aluminum atoms organize themselves into a "superatom" in which the metals form a shared electron shell which resembles that of a single metal atom. Hence, the cluster has the chemical properties of an atom. Located on the outermost shell are three valence electrons whose spins align themselves in a magnetic field - hence the observed paramagnetism.
Knowledge base for new catalysts The researchers now intend to use the findings of the research project to develop fine-grained and hence highly effective catalyst materials. "We are still far away from being able to use it in applications", emphasizes Fischer. "But based on what we have now achieved, we can verify the suitability of copper-aluminum clusters for catalytic processes and also create clusters made of other promising metals."
Research Report: "The Mackay-type cluster [Cu43Al12](Cp*)12: Open-shell 67electron superatom with emerging metal-like electronic structure"
Malaysia government to review Australia rare earths plant Kuala Lumpur (AFP) Sept 25, 2018 An ardent critic of an Australian rare earths plant in Malaysia said Tuesday she will head a government review into the controversial site after her political alliance took power at landmark elections. Shares of Australian miner Lynas have been hit since reports emerged that MP Fuziah Salleh had been picked to probe the plant, which has long been opposed by green groups over concerns it produces dangerous radioactive waste. The factory began processing rare earths sent from Australia in 2012. Th ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |