. 24/7 Space News .
Heaviest Stellar Black Hole Discovered In Nearby Galaxy

The main component of this graphic is an artist's representation of M33 X-7, a binary system in the nearby galaxy M33. In this system, a star about 70 times more massive than the Sun (large blue object) is revolving around a black hole. This black hole is almost 16 times the Sun's mass, a record for black holes created from the collapse of a giant star. Other black holes at the centers of galaxies are much more massive, but this object is the record-setter for a so-called "stellar mass" black hole. Credit: Illustration: NASA/CXC/M.Weiss; X-ray: NASA/CXC/CfA/P.Plucinsky et al.; Optical: NASA/STScI/SDSU/J.Orosz et al.
by Staff Writers
Huntsville AL (SPX) Oct 18, 2007
Astronomers have located an exceptionally massive black hole in orbit around a huge companion star. This result has intriguing implications for the evolution and ultimate fate of massive stars. The black hole is part of a binary system in M33, a nearby galaxy about 3 million light years from Earth. By combining data from NASA's Chandra X-ray Observatory and the Gemini telescope on Mauna Kea, Hawaii, the mass of the black hole, known as M33 X-7, was determined to be 15.7 times that of the Sun.

This makes M33 X-7 the most massive stellar black hole known. A stellar black hole is formed from the collapse of the core of a massive star at the end of its life.

"This discovery raises all sorts of questions about how such a big black hole could have been formed," said Jerome Orosz of San Diego State University, lead author of the paper appearing in the October 18th issue of the journal Nature.

M33 X-7 orbits a companion star that eclipses the black hole every three and a half days. The companion star also has an unusually large mass, 70 times that of the Sun. This makes it the most massive companion star in a binary system containing a black hole.

"This is a huge star that is partnered with a huge black hole," said coauthor Jeffrey McClintock of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. "Eventually, the companion will also go supernova and then we'll have a pair of black holes."

The properties of the M33 X-7 binary system - a massive black hole in a close orbit around a massive companion star - are difficult to explain using conventional models for the evolution of massive stars. The parent star for the black hole must have had a mass greater than the existing companion in order to have formed a black hole before the companion star. Such a massive star would have had a radius larger than the present separation between the stars, so the stars must have been brought closer while sharing a common outer atmosphere. This process typically results in a large amount of mass being lost from the system, so much that the parent star should not have been able to form a 15.7 solar-mass black hole.

The black hole's progenitor must have shed gas at a rate about 10 times less than predicted by models before it exploded. If even more massive stars also lose very little material, it could explain the incredibly luminous supernova seen recently as SN 2006gy. The progenitor for SN 2006gy is thought to have been about 150 times the mass of the Sun when it exploded.

"Massive stars can be much less extravagant than people think by hanging onto a lot more of their mass toward the end of their lives," said Orosz. "This can have a big effect on the black holes that these stellar time-bombs make."

Coauthor Wolfgang Pietsch was also the lead author of an article in the Astrophysical Journal that used Chandra observations to report that M33 X-7 is the first black hole in a binary system observed to undergo eclipses. The eclipsing nature enables unusually accurate estimates for the mass of the black hole and its companion.

"Because it's eclipsing and because it has such extreme properties, this black hole is an incredible test-bed for studying astrophysics," said Pietsch.

The length of the eclipse seen by Chandra gives information about the size of the companion. The scale of the companion's motion, as inferred from the Gemini observations, gives information about the mass of the black hole and its companion. Other observed properties of the binary were used to constrain the mass estimates.

Community
Email This Article
Comment On This Article

Related Links
Chandra program
Understanding Time and Space



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


CU Scientists Research Space With NASA
New York NY (SPX) Oct 18, 2007
With Columbia at the helm, NASA has restarted a high-profile astrophysics mission to probe the high-energy emissions of space. The initiative-known as Nuclear Spectroscopic Telescope Array, or NuSTAR-aims to study the X-ray energy emanating from black holes and supernovae. It is a joint project between the Columbia department of physics and the California Institute of Technology.







  • Greeting A Living Legend: NASA's Cosentino Meets Childhood Hero Buzz Aldrin
  • Russia To Develop New Carrier Rocket For Kliper
  • Astronauts lap up Malaysian food to mark Ramadan end
  • SAIC Awarded NASA Moon Mission Facilities Contract

  • Hawaii Reveals Steamy Martian Underground
  • Hummocky And Shallow Maunder Crater
  • NASA extends Mars probes' mission for 5th time
  • Opportunity Begins Sustained Exploration Inside Crater

  • ATK Propulsion And Composite Technologies Help Launch GPS Satellite
  • United Launch Alliance Managed Delta 2 Launches New GPS For US Air Force
  • United Launch Alliance Atlas V Awarded Two NASA Missions
  • Russia Says Space Launch Vehicles Tests To Start On Schedule

  • ITT Sensors Aboard DigitalGlobe's WorldView-1 Satellite Capture First High-Res Images
  • Successful Image Taking By The High Definition Television
  • Boeing Launches WorldView-1 Earth-Imaging Satellite
  • New Faraway Sensors Warn Of Emerging Hurricane's Strength

  • Checking Out New Horizons
  • Pluto-Bound New Horizons Sees Changes In Jupiter System
  • Maneuver Puts New Horizons On A Straight Path To Pluto
  • Outbound To The Outerplanets At 7 AU

  • The Fantastic Skies Of Orphan Stars
  • Science With Integral - Five Years On
  • Testing Einstein: Is Dark Energy Constant
  • NASA Extends Operations For Its Long-Lived Mars Rovers

  • China moon probe to launch this month
  • Japan's lunar probe enters orbit as space race heats up
  • Goddard Lunar Science On A Roll
  • Lunar Outpost Plans Taking Shape

  • Another GPS Satellite Successfully Launched
  • Science And Galileo - Working Together
  • Modernized GPS Built By Lockheed Martin Ready For Launch From Cape Canaveral
  • Krasnoyarsk Hosts GLONASS Development Conference

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement