. 24/7 Space News .
STELLAR CHEMISTRY
Hawaii telescopes help unravel long-standing cosmic mystery
by Staff Writers
Manoa HI (SPX) Jul 16, 2018

Artist's impression of a blazar emitting neutrinos and gamma rays.

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino
Tokyo, Japan (SPX) Jul 14 - Today, an international team announced that for the first time in the world they had identified the source object of an ultra-high energy neutrino. On September 22, 2017 the IceCube experiment at Amundsen Scott station in Antarctica detected an ultra-high energy neutrino coming from outer space and was able to determine the direction it came from to within about 1 degree using the system developed by researchers at Chiba University. While narrow compared to the entire sky, 1 degree still contains many possible candidates for the source object.

OISTER, a network of Japanese university telescopes, collaborating with the 8-m Subaru Telescope in Hawaii, performed follow-up observations to determine the source of this enigmatic neutrino. They found that an object named TXS 0506+056 was acting peculiarly: shining 3 times brighter than normal and fluctuating more than usual. TXS 0506+056 is a blazer, superheated matter releasing abundant radiation as it slowly spirals down into a supermassive black hole.

A quick calculation showed that the odds of two freak occurrences (the ultra-high energy neutrino and a flaring blazer) occurring so close together in time and space by pure chance is effectively zero, unless the two phenomena are related. Therefore TXS 0506+056 must be the source object of the neutrino. Prof. Michitoshi Yoshida, the Director of Subaru Telescope comments, "We congratulate all members of the IceCube and OISTER teams on this important discovery. We are proud that the Subaru Telescope with its deep observation capability could play a small role in this discovery. In this era of multi-messenger astronomy, collaboration between different observing facilities will be increasingly important. We look forward to working with this team more in the future."

Astronomers and physicists around the world, including in Hawaii, have begun to unravel a long-standing cosmic mystery. Using a vast array of telescopes in space and on Earth, they have identified a source of cosmic rays--highly energetic particles that continuously rain down on Earth from space.

In a paper published this week in the journal Science, scientists have, for the first time, provided evidence for a known blazar, designated TXS 0506+056, as a source of high-energy neutrinos. At 8:54 p.m. on September 22, 2017, the National Science Foundation-supported IceCube neutrino observatory at the South Pole detected a high energy neutrino from a direction near the constellation Orion. Just 44 seconds later an alert went out to the entire astronomical community.

The All Sky Automated Survey for SuperNovae team (ASAS-SN), an international collaboration headquartered at Ohio State University, immediately jumped into action. ASAS-SN uses a network of 20 small, 14-centimeter telescopes in Hawaii, Texas, Chile and South Africa to scan the visible sky every 20 hours looking for very bright supernovae. It is the only all-sky, real-time variability survey in existence.

"When ASAS-SN receives an alert from IceCube, we automatically find the first available ASAS-SN telescope that can see that area of the sky and observe it as quickly as possible," said Benjamin Shappee, an astronomer at the University of Hawaii's Institute for Astronomy and an ASAS-SN core member.

On September 23, only 13 hours after the initial alert, the recently commissioned ASAS-SN unit at McDonald Observatory in Texas mapped the sky in the area of the neutrino detection. Those observations and the more than 800 images of the same part of the sky taken since October 2012 by the first ASAS-SN unit, located on Maui's Haleakala, showed that TXS 0506+056 had entered its highest state since 2012.

"The IceCube detection and the ASAS-SN detection combined with gamma-ray detections from NASA's Fermi gamma-ray space telescope and the MAGIC telescopes that show TXS 0506+056 was undergoing the strongest gamma-ray flare in a decade, indicate that this could be the first identified source of high-energy neutrinos, and thus a cosmic-ray source," said Anna Franckowiak, ASAS-SN and IceCube team member, Helmholtz Young Investigator, and staff scientist at DESY in Germany.

Since they were first detected more than one hundred years ago, cosmic rays have posed an enduring mystery: What creates and launches these particles across such vast distances? Where do they come from?

One of the best suspects have been quasars, supermassive black holes at the centers of galaxies that are actively consuming gas and dust. Quasars are among the most energetic phenomena in the universe and can form relativistic jets where elementary particles are accelerate and launched at nearly the speed of light.

If that jet happens to be pointed toward Earth, the light from the jet outshines all other emission from the host galaxy and the highly accelerated particles are launched toward the Milky Way. This specific type of quasar is called a blazar.

However, because cosmic rays are charged particles, their paths cannot be traced directly back to their places of origin. Due to the powerful magnetic fields that fill space, they don't travel along a straight path. Luckily, the powerful cosmic accelerators that produce them also emit neutrinos, which are uncharged and unaffected by even the most powerful magnetic fields. Because they rarely interact with matter and have almost no mass, these "ghost particles" travel nearly undisturbed from their cosmic accelerators, giving scientists an almost direct pointer to their source.

"Crucially, the presence of neutrinos also differentiates between two types of gamma-ray sources: those that accelerate only cosmic-ray electrons, which do not produce neutrinos, and those that accelerate cosmic-ray protons, which do," said John Beacom, an astrophysicist at the Ohio State University and an ASAS-SN member.

Detecting the highest energy neutrinos requires a massive particle detector, and the National Science Foundation-supported IceCube observatory is the world's largest. The detector is composed of more than 5,000 light sensors arranged in a grid, buried in a cubic kilometer of deep, pristine ice a mile beneath the surface at the South Pole.

When a neutrino interacts with an atomic nucleus, it creates a secondary charged particle, which, in turn, produces a characteristic cone of blue light that is detected by IceCube's grid of photomultiplier tubes. Because the charged particle and the light it creates stay essentially true to the neutrino's original direction, they give scientists a path to follow back to the source.

About 20 observatories on Earth and in space have also participated in this discovery. This includes the 8.4-meter Subaru Telescope on Maunakea, which was used to observe the host galaxy of TXS 0506+056 in an attempt to measure its distance, and thus determine the intrinsic luminosity, or energy output, of the blazar.

These observations are difficult, because the blazar jet is much brighter than the host galaxy. Disentangling the jet and the host requires the largest telescopes in the world, like those on Maunakea.

"This discovery demonstrates how the many different telescopes and detectors around and above the world can come together to tell us something amazing about our Universe. This also emphasizes the critical role that telescopes in Hawaii play in that community," said Shappee.

Research paper


Related Links
University of Hawaii at Manoa
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
IceCube neutrinos point to long-sought cosmic ray accelerator
Madison WI (SPX) Jul 13, 2018
An international team of scientists has found the first evidence of a source of high-energy cosmic neutrinos, ghostly subatomic particles that can travel unhindered for billions of light years from the most extreme environments in the universe to Earth. The observations, made by the IceCube Neutrino Observatory at the Amundsen-Scott South Pole Station and confirmed by telescopes around the globe and in Earth's orbit, help resolve a more than a century-old riddle about what sends subatomic particle ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Orion Jettison Motor Ready for Crew Escape System Test

First space tourist flights could come in 2019

Testing Refines Requirements for Deep Space Habitat Design

Making oxygen from water may pave way for long-distance space travel

STELLAR CHEMISTRY
Boeing, SpaceX unlikely to make manned flights to ISS in 2019

Experimental Spaceplane Program Successfully Completes Engine Test Series

Aurora Launch Services established in Alaska To provide responsive launch services

Multiple Launches in Two Weeks: Maximizing Vehicle Payload

STELLAR CHEMISTRY
NASA May Have Destroyed Evidence for Organics on Mars 40 Years Ago

Scientists Discover "Ghost Dunes" On Mars

UK space sector set to benefit from new European Space Agency contract

Airbus wins two ESA studies for Mars Sample Return mission

STELLAR CHEMISTRY
China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

STELLAR CHEMISTRY
EIB and ESA to cooperate on increasing investments in the European Space Sector

China Mulls Creation of Joint Global Satellite System with Russia

Laser-Based System is Set to Expand Space-to-Ground Communication

Yes we've got a space agency - but our industry needs 'Space Prize Australia'

STELLAR CHEMISTRY
Astronomer Reveals When Soviet-Era Interplanetary Station Will Crash to Earth

Giant Satellite Fuel Tank Sets New Record for 3-D Printed Space Parts

New insights bolster Einstein's idea about how heat moves through solids

Spectral cloaking could make objects invisible under realistic conditions

STELLAR CHEMISTRY
NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

TESS Spacecraft Continues Testing Prior to First Observations

NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

Rocky planet neighbor looks familiar, but is not Earth's twin

STELLAR CHEMISTRY
First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.